Arquitectura de referencia para el diseño y desarrollo de aplicaciones para la Industria 4.0

Ricardo Dintén Herrero, Patricia López Martínez, Marta Zorrilla

Resumen

La implementación práctica de la Industria 4.0 requiere la reformulación y coordinación de los procesos industriales. Para ello se requiere disponer de una plataforma digital que integre y facilite la comunicación e interacción entre los elementos implicados en la cadena de valor. Actualmente no existe una arquitectura de referencia (modelo) que ayude a las organizaciones a concebir, diseñar e implantar esta plataforma digital. Este trabajo proporciona ese marco e incluye un metamodelo que recoge la descripción de todos los elementos involucrados en la plataforma digital (datos, recursos, aplicaciones y monitorización), así como la información necesaria para configurar, desplegar y ejecutar aplicaciones en ella. Asimismo, se proporciona una herramienta compatible con el metamodelo que automatiza la generación de archivos de configuración y lanzamiento y su correspondiente transferencia y ejecución en los nodos de la plataforma. Por último, se muestra la flexibilidad, extensibilidad y validez de la arquitectura y artefactos software construidos a través de su aplicación en un caso de estudio.


Palabras clave

Arquitectura centrada en el dato; Metamodelo; Desarrollo basado en modelos; Aplicaciones industriales; Industria 4.0

Texto completo:

PDF

Referencias

Ahmad, S., Badwelan, A., Ghaleb, A. M., Qamhan, A., Sharaf, M. Analyzing critical failures in a production process: is industrial iot the solution?, Wireless Communications and Mobile Computing (2018). doi: 10.1155/2018/6951318.

Alcácer, V., Cruz-Machado, V. Scanning the industry 4.0: A literature review on technologies for manufacturing systems, Engineering Science and Technology, an International Journal 22 (3) (2019) 899 – 919. doi:https://doi.org/10.1016/j.jestch.2019.01.006.

Angulo, P., Guzmán, C. C., Jiménez, G., Romero, D. A service-oriented architecture and its ict-infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises, International Journal of Computer Integrated Manufacturing 30 (1) (2017) 202–214. arXiv:https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2016.1145810, doi:10.1080/0951192X.2016.1145810.

Arantes, M., Bonnard, R., Mattei, A. P., Saqui-Sannes, P. de. General architecture for data analysis in industry 4.0 using sysml and model based system engineering, in: 2018 Annual IEEE International Systems Conference, SysCon 2018, Vancouver, BC, Canada, April 23-26, 2018, 2018, pp.1–6. doi:10.1109/SYSCON.2018.8369574.

Arantes, M., Bonnard, R., Mattei, A. P., Saqui-Sannes, P. de. General architecture for data analysis in industry 4.0 using sysml and model based system engineering, in: 2018 Annual IEEE International Systems Conference (SysCon), 2018, pp. 1–6. doi:10.1109/SYSCON.2018.8369574.

The apache avro project: a data serialization system, http://avro. apache.org (accessed 30 April 2019).

Apache Cassandra., http://cassandra.apache.org/ (accessed 30 April 2019).

Apache Kafka project: A distributed streaming platform, http://kafka. apache.org/ (accessed 30 April 2019). The Apache Software Foundation, http://www.apache.org/ (accessed 30 April 2019).

Apache Spark: A fast and general engine for large-scale data processing, http://spark.apache.org/ (accessed 30 Dec 2019).

Apache Storm: A fast and general engine for large-scale data processing, https://storm.apache.org/ (accessed 30 Dec 2019) Apache Zookeeper., https://zookeeper.apache.org/ (accessed 30 April 2019).

Chen, Y., Feng, Q., Shi, W. An industrial robot system based on edge computing: An early experience, in: USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), USENIX Association, Boston, MA, 2018.

Data-centric architecture: A model for embracing the machine age, https://www.stratio.com/whitepaper-data-centric-architecture/,accessed 30 Dec 2019 (2019).

Díaz, G., Macià, H., Valero, V., Boubeta-Puig, J., Cuartero, F, “An Intellgent Transportation System to control air pollution and road traffic in cities integrating CEP and Colored Petri Nets.” Neural Computing and Applications 32(2): 405-426 (2020).

Durão, L. F. C. S., Eichhorn, H., Anderl, R., Schützer, K., Senzi Zancul, E. de, Integrated component data model based on uml for smart components lifecycle management: A conceptual approach, in: A. Bouras, B. Eynard, S. Foufou, K.-D. Thoben (Eds.), Product Lifecycle Management in the Era of Internet of Things, Springer International Publishing, Cham, 2016, pp. 13–22.

Empowering app development for developers | Docker, https://www.docker.com/ (accessed 28 September 2020)

Ghobakhloo, M. The future of manufacturing industry: a strategic roadmap toward industry 4.0, Journal of Manufacturing Technology Management 29 (2018) 910–936.

Guerriero, M., Tajfar, S., Tamburri, D. A., Di Nitto, E. Towards a model- driven design tool for big data architectures, in: Proceedings of the 2Nd International Workshop on BIG Data Software Engineering, BIGDSE ’16, ACM, New York, NY, USA, 2016, pp. 37–43. doi:10.1145/2896825. 2896835.

Hermann, M., Pentek, T., Otto, B. Design principles for industrie 4.0 scenarios, in: 2016 49th Hawaii International Conference on System Sciences (HICSS), 2016, pp. 3928–3937.

I. I. Consortium, Industrial internet reference architecture v1.9, http://www.iiconsortium.org/IIRA.htm, accessed 30 April 2019 (2019).

Junqueira. F., Reed B., ZooKeeper: Distributed process Coordination, O,Reilly, 2014.

Kannan, S. M., Suri, K., Cadavid, J., Barosan, I., Brand, M. v. d., Alferez, M., Gerard, S., Towards industry 4.0: Gap analysis between current automotive mes and industry standards using model-based requirement engineering, in: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), 2017, pp. 29–35. doi:10.1109/ICSAW.2017.53.

Lassoued, Y., Nurcan, S. Modeling contextualized flexible cloud workflow services: An mde based approach, in: 2017 11th International Conference on Research Challenges in Information Science (RCIS), 2017, pp. 44–55. doi:10.1109/RCIS.2017.7956516.

López, C. B., García, J. J., S. H. González, S. H. Análisis exhaustivo de los principios de diseño en el contexto de industria 4.0, Revista Iberoamericana de Automática e Informática industrial 0 (0) (2020). doi:10.4995/riai.2020.12579.

Memsql:tutorials overview., https://docs.memsql.com/tutorials/v5.8/tutorials-overview/ (accessed 30 April 2019)).

Pérez-Palacín, D., Merseguer, J., Requeno, J. I., Guerriero, M., Di Nitto, E., Tamburri, D. A. A uml profile for the design, quality assessment and de- ployment of data-intensive applications, Software and Systems Modeling 18 (6) (2019) 3577–3614. doi:10.1007/s10270-019-00730-3.

Petrasch, R., Hentschke, R. Process modeling for industry 4.0 applications: Towards an industry 4.0 process modeling language and method, in: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2016, pp. 1–5. doi:10.1109/JCSSE.2016.7748885.

RAMI 4.0, Reference architectural model industrie 4.0, https://www. plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html, accessed 30 Dec 2019 (2018).

Prometheus exporters, https://github.com/prometheus/node_exporter (accessed 30 April 2019).

Prometheus overview, https://prometheus.io/docs/introduction/overview/ (accessed 30 April 2019).

RAI4 deployment tool and metamodel, https://github.com/istr-uc/RAI4DeploymentTool (accessed 20 July 2020).

Rajbhoj, A., Kulkarni, V., Bellarykar, N. Early experience with model-driven development of mapreduce based big data application, in: 2014 21st Asia- Pacific Software Engineering Conference, Vol. 1, 2014, pp. 94–97. doi: 10.1109/APSEC.2014.23.

Raptis, T. P., Passarella, A., Conti, M. Data management in industry 4.0: State of the art and open challenges, IEEE Access 7 (2019) 97052–97093. doi:10.1109/ACCESS.2019.2929296.

Reza Delavar, M., Gholami, A., Reza Shiran, G., Rashidi, Y., Reza Nakhaeizadeh, G., Kurt Freda, Smaeil Hatefi Afshar, “A Novel Method for Improving Air Pollution Prediction Based on Machine Learning Approaches: A Case Study Applied to the Capital City of Tehran”. ISPRS Int. J. Geo-Information 8(2): 99m 2019.

Sahal, R., Breslin, J. G., Ali, M. I. Big data and stream processing platforms for industry 4.0 requirements mapping for a predictive maintenance use case, Journal of Manufacturing Systems 54 (2020) 138 – 151. doi:https://doi.org/10.1016/j.jmsy.2019.11.004.

Salkin, C., Oner, M., Ustundag, A., Cevikcan, E. A Conceptual Framework for Industry 4.0, Springer International Publishing, Cham, 2018, pp. 3–23. doi:10.1007/978-3-319-57870-5_1.

Santurkar, S., Arora, A., Chandrasekaran, K. Stormgen - a domain specific language to create ad-hoc storm topologies, in: 2014 Federated Conference on Computer Science and Information Systems, 2014, pp. 1621–1628. doi: 10.15439/2014F278.

Suri, K., Cadavid, J., Alferez, M., Dhouib, S., Tucci-Piergiovanni, S. Modeling business motivation and underlying processes for rami 4.0-aligned cyber- physical production systems, in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2017, pp. 1–6. doi:10.1109/ETFA.2017.8247702.

Thoben, K.-D., Wiesner, S., Wuest, T. “industrie 4.0” and smart manufacturing – a review of research issues and application examples, International Journal of Automation Technology 11 (1) (2017) 4–16. doi:10.20965/ijat.2017.p0004.

Velásquez, N., Estevez, E., Pesado, P. Cloud computing, big data and the industry 4.0 reference architectures, Journal of Computer Science and Technology 18 (03) (2018) e29. doi:10.24215/16666038.18.e29.

Wiesner, S., Thoben, K.-D. Requirements for models, methods and tools supporting servitisation of products in manufacturing service ecosystems, International Journal of Computer Integrated Manufacturing (2016) 1– 11doi:10.1080/0951192X.2015.1130243.

Wingerath, W., Gessert, F., Friedrich, S., Ritter, N. “Real-time stream processing for big data”, Information Technology 4 (58) (2016) 186–194.

Wortmann, A., Combemale, B., Barais, O. A systematic mapping study on modeling for industry 4.0, in: 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS), 2017, pp. 281–291. doi:10.1109/MODELS.2017.14.

Yebenes, J., Zorrilla, M. Towards a data governance framework for third generation platforms, Procedia Computer Science The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40) (2019).

Zhong, R. Y., Xu, X., Klotz, E., Newman, S. T. Intelligent manufacturing in the context of industry 4.0: A review, Engineering 3 (5) (2017) 616 – 630. doi:https://doi.org/10.1016/J.ENG.2017.05.015.

Zorrilla, M. E., Ibrain, Á. Bernard, an energy intelligent system for raising residential users awareness, Computers & Industrial Engineering 135 (2019) 492–499. doi:10.1016/j.cie.2019.06.040

Abstract Views

313
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912