Detección de fallas en vehículos aéreos no tripulados mediante señales de orientación y técnicas de aprendizaje de máquina

Autores/as

DOI:

https://doi.org/10.4995/riai.2020.14031

Palabras clave:

Vehículo aéreo no tripulado, detección e identificación de fallas, análisis en componentes principales, aprendizaje de máquina, cuadrirrotor

Resumen

Este trabajo propone un esquema de detección y localización de fallas en los actuadores de un vehículo aéreo no tripulado (VANT) del tipo cuadrirrotor. Para ello, se considera un enfoque basado en datos haciendo uso de técnicas de aprendizaje de máquina. En este enfoque se construye un modelo implícito del sistema a través de la información proporcionada por los sensores del VANT. Primero, a través de un plataforma de vuelo de tipo giroscópica, se captan las vibraciones correspondientes a la orientación, posición angular y aceleración lineal cuando el vehículo se encuentra en vuelo estacionario en condiciones nominales. Estos datos se procesan mediante Análisis en Componentes Principales (PCA) para la extracción de características. Posteriormente, se induce una falla a los actuadores a través de un recorte en cada una de las hélices del VANT que ocasionan una reducción del empuje generado por los rotores. Estos datos se proyectan también al subespacio de componentes principales y se comparan con los datos nominales. Para discernir entre los datos nominales y los datos cuando el vehículo presenta falla, se emplea el estadístico T2 de Hotelling. Finalmente, el desarrollo se complementa con los algoritmos de clasificación de k-vecinos más cercanos (k-NN) y de máquina de vectores de soporte (SVM). Los resultados muestran una tasa de clasificación correcta del 89.6 % (k-NN) y 92.4 %(SVM) respectivamente para 423 conjuntos de datos de validación.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

F. R. López-Estrada, Tecnológico Nacional de México

I.T. Tuxtla Gutiérrez

TURIX-Dynamics Diagnosis and Control Group

A. Méndez-López, Tecnológico Nacional de México

I.T. Tuxtla Gutiérrez

TURIX-Dynamics Diagnosis and Control Group

I. Santos-Ruiz, Tecnológico Nacional de México

I.T. Tuxtla Gutiérrez

TURIX-Dynamics Diagnosis and Control Group

G. Valencia-Palomo, Tecnológico Nacional de México

I.T. Hermosillo

E. Escobar-Gómez, Tecnológico Nacional de México

I.T. Tuxtla Gutiérrez

TURIX-Dynamics Diagnosis and Control Group

Citas

Alos, A., Dahrouj, Z., 2020. Detecting contextual faults in unmanned aerial vehicles using dynamic linear regression and k-nearest neighbour classifier. Gyroscopy and Navigation 11, 94-104. https://doi.org/10.1134/S2075108720010046

Baskaya, E., Bronz, M., Delahaye, D., 2017. Fault detection & diagnosis for small uavs via machine learning, in: Digital Avionics Systems Conference (DASC), 2017 IEEE/AIAA 36th, IEEE. pp. 1-6. https://doi.org/10.1109/DASC.2017.8102037

Benini, A., Ferracuti, F., Monteriu, A., Radensleben, S., 2019. Fault detection of a VTOL UAV using acceleration measurements, in: 2019 18th European Control Conference (ECC), IEEE. pp. 3990-3995. https://doi.org/10.23919/ECC.2019.8796198

Freeman, P., Pandita, R., Srivastava, N., Balas, G.J., 2013. Model-based and data-driven fault detection performance for a small UAV. IEEE/ASME Transactions on Mechatronics 18, 1300-1309. https://doi.org/10.1109/TMECH.2013.2258678

Gertler, J., 2015. Fault detection and diagnosis. Encyclopedia of Systems and Control, 417-422. https://doi.org/10.1007/978-1-4471-5058-9_223

Ghalamchi, B., Mueller, M., 2018. Vibration-based propeller fault diagnosis for multicopters, in: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE. pp. 1041-1047. https://doi.org/10.1109/ICUAS.2018.8453400

Guo, K., Liu, L., Shi, S., Liu, D., Peng, X., 2019. UAV sensor fault detection using a classifier without negative samples: A local density regulated optimization algorithm. Sensors 19, 771. https://doi.org/10.3390/s19040771

Guzmán-Rabasa, J.A., López-Estrada, F.R., González-Contreras, B.M., Valencia-Palomo, G., Chadli, M., Pérez-Patricio, M., 2019. Actuator fault detection and isolation on a quadrotor unmanned aerial vehicle modeled as a linear parameter-varying system. Measurement and Control 52, 1228-1239. https://doi.org/10.1177/0020294018824764

Iannace, G., Ciaburro, G., Trematerra, A., 2019. Fault diagnosis for UAV blades using artificial neural network. Robotics 8, 59. https://doi.org/10.3390/robotics8030059

Jiang, Y., Zhiyao, Z., Haoxiang, L., Quan, Q., 2015. Fault detection and identification for quadrotor based on airframe vibration signals: a data-driven method, in: 2015 34th Chinese Control Conference (CCC), IEEE. pp. 6356- 6361. https://doi.org/10.1109/ChiCC.2015.7260639

Jolliffe, I., 2011. Principal component analysis. Springer. https://doi.org/10.1007/978-3-642-04898-2_455

Keipour, A., Mousaei, M., Scherer, S., 2019. Alfa: A dataset for UAV fault and anomaly detection. arXiv preprint arXiv:1907.06268.

Khan, B., Rossiter, J.A., Valencia-Palomo, G., 2011. Exploiting kautz functions to improve feasibility in MPC. IFAC Proceedings Volumes 44, 6777-6782. https://doi.org/10.3182/20110828-6-IT-1002.00251

Li, M., Li, G., Zhong, M., 2016. A data driven fault detection and isolation scheme for UAV flight control system, in: Control Conference (CCC), 2016 35th Chinese, IEEE. pp. 6778-6783. https://doi.org/10.1109/ChiCC.2016.7554425

López-Estrada, F.R., Rotondo, D., Valencia-Palomo, G., 2019. A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems. Processes 7, 814. https://doi.org/10.3390/pr7110814

López-Estrada, F.R., Santos-Estudillo, O., Valencia-Palomo, G., Gómez- Peñate, S., Hernandez-Gutiérrez, C., 2020. Robust qLPV tracking fault-tolerant control of a 3 dof mechanical crane. Mathematical and Computational Applications 25, 48. https://doi.org/10.3390/mca25030048

Martinez, W.L., Martinez, A.R., 2015. Computational statistics handbook with MATLAB. Chapman and Hall/CRC. https://doi.org/10.1201/b19035

Mouloua, M., Gilson, R., Kring, J., Hancock, P., 2001. Workload, situation awareness, and teaming issues for UAV/UCAV operations, in: Proceedings of the human factors and ergonomics society annual meeting, SAGE Publications Sage CA: Los Angeles, CA. pp. 162-165. https://doi.org/10.1177/154193120104500235

Mueller, M.W., D'Andrea, R., 2014. Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers, in: 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE. pp. 45-52. https://doi.org/10.1109/ICRA.2014.6906588

Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakazawa, D., 2010. Introduction, in: Autonomous Flying Robots. Springer, pp. 1-29. https://doi.org/10.1007/978-4-431-53856-1_1

Qin, S.J., 2012. Survey on data-driven industrial process monitoring and diagnosis. Annual reviews in control 36, 220-234. https://doi.org/10.1016/j.arcontrol.2012.09.004

Russell, E.L., Chiang, L.H., Braatz, R.D., 2012. Data-driven methods for fault detection and diagnosis in chemical processes. Springer Science & Business Media.

Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., Sanahuja, G., 2015. Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor, in: IEEE International Conference on Robotics and Automation, IEEE. pp. 5266-5271. https://doi.org/10.1109/ICRA.2015.7139933

Santos-Ruiz, I., López-Estrada, F.R., Puig, V., Blesa, J., Javadiha, M., 2019. Localización de fugas en redes de distribución de agua mediante k-NN con distancia cosenoidal. Asociación de México de Control Automático.

Sharifi, F., Mirzaei, M., Gordon, B.W., Zhang, Y., 2010. Fault tolerant control of a quadrotor uav using sliding mode control, in: 2010 Conference on Control and Fault-Tolerant Systems (SysTol), IEEE. pp. 239-244. https://doi.org/10.1109/SYSTOL.2010.5675979

Strang, G., Strang, G., Strang, G., Strang, G., 2016. Introduction to linear algebra. volume 3. Wellesley-Cambridge Press Wellesley, MA.

Sun, R., Cheng, Q., Wang, G., Ochieng, W., 2017. A novel online data-driven algorithm for detecting UAV navigation sensor faults. Sensors 17, 2243. https://doi.org/10.3390/s17102243

Tamura, M., Tsujita, S., 2007. A study on the number of principal components and sensitivity of fault detection using PCA. Computers & Chemical Engineering 31, 1035-1046. https://doi.org/10.1016/j.compchemeng.2006.09.004

Valencia-Palomo, G., Villanueva-Grijalba, O., Robles-Ríos, R., 2018. Device for the pose measurement and test of control algoritms for unmanned aerial vehicles. Mexican Patent MX/a/2017/005377.

Vapnik, V., 2013. The nature of statistical learning theory. Springer Science & Business Media.

Vey, D., Lunze, J., 2016. Experimental evaluation of an active fault-tolerant control scheme for multirotor uavs, in: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), IEEE. pp. 125-132. https://doi.org/10.1109/SYSTOL.2016.7739739

Wang, B., Peng, X., Jiang, M., Liu, D., 2020. Real time fault detection for UAV based on model acceleration engine. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2020.3001659

Wang, B., Wang, Z., Liu, L., Liu, D., Peng, X., 2019. Data-driven anomaly detection for UAV sensor data based on deep learning prediction model, in: 2019 Prognostics and System Health Management Conference (PHMParis), IEEE. pp. 286-290. https://doi.org/10.1109/PHM-Paris.2019.00055

Wold, S., 1978. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20, 397-405. https://doi.org/10.1080/00401706.1978.10489693

Xian, B., Hao, W., 2019. Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo's stuck fault: Theory and experiments. IEEE Transactions on Industrial Informatics 15, 2158-2166. https://doi.org/10.1109/TII.2018.2858143

Xiao, K., Zhao, J., He, Y., Li, C., Cheng, W., 2019. Abnormal behavior detection scheme of UAV using recurrent neural networks. IEEE Access 7, 110293-110305. https://doi.org/10.1109/ACCESS.2019.2934188

Yang, H., Meng, C., Wang, C., 2020. A hybrid data-driven fault detection strategy with application to navigation sensors. Measurement and Control , 0020294020920891.

Yap, Y.K., 2014. Structural health monitoring for unmanned aerial systems. EECS., UNC, BerNley, Rep. UCB/EECS-2014-70.

Yousefi, P., Fekriazgomi, H., Demir, M.A., Prevost, J.J., Jamshidi, M., 2018. Data-driven fault detection of un-manned aerial vehicles using supervised learning over cloud networks, in: 2018 World Automation Congress (WAC), IEEE. pp. 1-6. https://doi.org/10.23919/WAC.2018.8430428

Descargas

Publicado

01-07-2021

Cómo citar

López-Estrada, F. R., Méndez-López, A., Santos-Ruiz, I., Valencia-Palomo, G. y Escobar-Gómez, E. (2021) «Detección de fallas en vehículos aéreos no tripulados mediante señales de orientación y técnicas de aprendizaje de máquina», Revista Iberoamericana de Automática e Informática industrial, 18(3), pp. 254–264. doi: 10.4995/riai.2020.14031.

Número

Sección

Artículos