Planificación de trayectorias en sistemas multirobot utilizando redes de Petri. Resultados y problemas abiertos

C. Mahulea, R. González, E. Montijano, M. Silva

Resumen

Este trabajo presenta una estrategia de planificacón de trayectorias en equipos de robots moviles basada en el uso de modelos definidos con redes de Petri. Estos tipos de modelos son muy útiles para especificaciones de alto nivel ya que, en este caso, los métodos clásicos de planificación (funciones potenciales, algoritmos RRT, RRT*) no se pueden utilizar, siendo difícil determinar a priori la secuencia de configuraciones para cada robot. Este trabajo presenta la definición formal de la Red de Petri de Movimiento de Robots que se obtiene a partir de una partición del entorno en celdas. Utilizando la estructura de la red de Petri, en caso de especificaciones definidas como fórmulas Booleanas o fórmulas en lógica temporal lineal (LTL), se presentan diferentes problemas de optimización que se pueden utilizar para obtener trayectorias para los robots. La principal ventaja de los modelos basados en redes de Petri es su escalabilidad con respecto al número de robots. Ello permite resolver con eficiencia problemas de planificación de equipos con un número grande de robots. En la segunda parte del trabajo, se presentan algunas extensiones y resultados nuevos para la planificación distribuida en entornos desconocidos y con comunicaciones parciales entre los robots.

Palabras clave

Planificación de trayectorias; sistemas multirobot; sistemas de eventos discretos; redes de Petri

Clasificación por materias

Planificación y seguimiento de trayectorias; Modelado de sistemas de eventos discretos e híbridos; Programación de robots y sistemas multi-robot

Texto completo:

PDF

Referencias

Baier, C., Katoen, J.P., 2008. Principles of model checking. MIT Press.

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.-J., 2007. Symbolic planning and control of robot motion. IEEE Robotics and Automation Magazine 14 (1), 61-71. https://doi.org/10.1109/MRA.2007.339624

Belta, C., Habets, L., 2006. Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control 51 (11), 1749-1759. https://doi.org/10.1109/TAC.2006.884957

Brown, F., 2012. Boolean Reasoning: The Logic of Boolean Equations, 2nd Edition. Dover Publications.

Castellanos, J. G., Cervantes, M. V., Santana, J. S., Martínez, S. R., 2014. Seguimiento de trayectorias de un robot movil (3,0) mediante control acotado. Rev. Iberoamericana de Automatica e Informática industrial 11 (4), 426-434. https://doi.org/10.1016/j.riai.2014.09.005

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., Thrun, S., 2005. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston.

Clarke, E.-M.-M., Peled, D., Grumberg, O., 1999. Model checking. MIT Press.

DeCastro, J., Ehlers, R., Runggers, M., Balkan, A., Kress-Gazit, H., 2016. Automated generation of dynamics-based runtime certificates for high-level control. Discrete Event Dynamic Systems 27 (2), 371-405. https://doi.org/10.1007/s10626-016-0232-7

Ding, X., Smith, S.-L., Belta, C., Rus, D., 2014. Optimal control of Markov decision processes with linear temporal logic constraints. IEEE Transactions on Automatic Control 59 (5), 1244-1257. https://doi.org/10.1109/TAC.2014.2298143

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L., 2016. Spot 2.0 - a framework for ltl and ω-automata manipulation. In: Proc. of ATVA'16. pp. 122-129. https://doi.org/10.1007/978-3-319-46520-3_8

Fainekos, G. E., Girard, A., Kress-Gazit, H., Pappas, G. J., 2009. Temporal logic motion planning for dynamic robots. Automatica 45 (2), 343-352. https://doi.org/10.1016/j.automatica.2008.08.008

Garrido, S., Moreno, L., Gomez, J.-V., Lima, P.-U., 2013. International Journal ' of Advanced Robotic Systems 10 (1), 64. https://doi.org/10.5772/53999

Gastin, P., Oddoux, D., 2001. Fast ltl to buchi automata translation. In: Proc. of the 13th Conference on Computer Aided Verification (CAV). pp. 53-65. https://doi.org/10.1007/3-540-44585-4_6

Gonzalez, R., Mahulea, C., Kloetzer, M., 2015. A Matlab-Based Interactive Simulator for Mobile Robotics. In: IEEE CASE'2015: Int. Conf. on Autom. Science and Engineering. Gothenburg, Sweden, pp. 310-315. https://doi.org/10.1109/CoASE.2015.7294097

Gonzalez, R., Rodriguez, F., Guzman, J. L., 2014. Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control. Series: Studies in Systems, Decision and Control. Springer. https://doi.org/10.1007/978-3-319-06038-5

Guo, M., Dimarogonas, D.-V., 2015. Multi-agent plan reconfiguration under local LTL specifications. Int. Journal of Robotics Research 34 (2), 218-235. https://doi.org/10.1177/0278364914546174

Habets, L. C. G. J. M., Collins, P. J., van Schuppen, J. H., 2006. Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Automatic Control 51, 938-948. https://doi.org/10.1109/TAC.2006.876952

Julian, B.-J., Angermann, M., Schwager, M., Rus, D., 2012. Distributed robotic sensor networks: An information-theoretic approach. The International Journal of Robotics Research 31 (10), 1134-1154. https://doi.org/10.1177/0278364912452675

Kloetzer, M., Mahulea, C., 2014. A Petri net based approach for multi-robot path planning. Discrete Event Dynamic Systems: Theory and Applications 24 (4), 417-445. https://doi.org/10.1007/s10626-013-0162-6

Kloetzer, M., Mahulea, C., 2014. An assembly problem with mobile robots. In: ETFA'2014: IEEE Emerging Technology and Factory Automation. pp. 1-7. https://doi.org/10.1109/ETFA.2014.7005116

Kloetzer, M., Mahulea, C., 2015. LTL-based planning in environments with probabilistic observations. IEEE Transactions on Automation Science and Engineering 12 (4), 1407-1420. https://doi.org/10.1109/TASE.2015.2454299

Kloetzer, M., Mahulea, C., 2020. Path planning for robotic teams based on LTL specifications and Petri net models. Discrete Event Dynamic Systems: Theory and Applications 30 (1), 55-79. https://doi.org/10.1007/s10626-019-00300-1

Lacerda, B., Lima, P. U., 2019. Petri net based multi-robot task coordination from temporal logic specifications. Robotics and Autonomous Systems 122, 343-352. https://doi.org/10.1016/j.robot.2019.103289

LaValle, S. M., 2006. Planning Algorithms. Cambridge, available at http://planning.cs.uiuc.edu. https://doi.org/10.1017/CBO9780511546877

Leahy, K., Cristofalo, E., Vasile, C.-I., Jones, A., Montijano, E., Schwager, M., Belta, C., 2019. Control in belief space with temporal logic specifications using vision-based localization. The International Journal of Robotics Research 38 (6), 702-722. https://doi.org/10.1177/0278364919846340

Mahulea, C., Kloetzer, M., 2018. Robot Planning based on Boolean Specifications using Petri Net Models. IEEE Trans. on Automatic Control 63 (7), 2218-2225. https://doi.org/10.1109/TAC.2017.2760249

Mahulea, C., Kloetzer, M., Gonzalez, R., 2020a. Path Planning of Cooperative ' Mobile Robots Using Discrete Event Models. IEEE Wiley. https://doi.org/10.1002/9781119486305

Mahulea, C., Kloetzer, M., Lesage, J.-J., 2020b. Multi-robot path planning with boolean specifications and collision avoidance. In: WODES'2020: 15th Workshop on Discrete Event Systems.

Mahulea, C., Montijano, E., Kloetzer, M., 2020c. Distributed Multirobot Path Planning in Unknown Maps Using Petri Net Models. IFACPapersOnLine21th IFAC World Congress.

Mesbahi, M., Egerstedt, M., 2010. Graph theoretic methods in multiagent networks. Princeton University Press. https://doi.org/10.1515/9781400835355

Montijano, E., Montijano, J.-I., Sagues, C., Feb 2013. Chebyshev polynomials in distributed consensus applications. IEEE Transactions on Signal Processing 61 (3), 693-706. https://doi.org/10.1109/TSP.2012.2226173

Montijano, E., Sagües, C., 2015. Distributed consensus with visual perception ' in multi-robot systems. Springer. https://doi.org/10.1007/978-3-319-15699-6

Parrilla, L., Mahulea, C., Kloetzer, M., 2017. RMTool: Recent Enhancements. IFAC-PapersOnLine 50 (1), 5824 - 5830, 20th IFAC World Congress. https://doi.org/10.1016/j.ifacol.2017.08.539

Schillinger, P., Burger, M., Dimarogonas, D., 2018. Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. The International Journal of Robotics Research 37 (7), 818-838. https://doi.org/10.1177/0278364918774135

Siegwart, R., Nourbakhsh, I., 2004. Introduction to Autonomous Mobile Robots, First Edition. A Bradford book. The MIT Press, USA. Silva, M., 1985. Las Redes de Petri : en la Automatica y la Informática; 1a ed. Editorial AC Madrid.

Silva, M., Colom, J.-M., 1988. On the Computation of Structural Synchronic Invariants in P/T Nets. Advances in Petri Nets'87 340, 386-417. https://doi.org/10.1007/3-540-50580-6_39

Silva, M., Teruel, E., Colom, J.-M., 1998. Linear Algebraic and Linear Programming Techniques for the Analysis of P/T Net Systems. Lecture on Petri Nets I: Basic Models 1491, 309-373. https://doi.org/10.1007/3-540-65306-6_19

Tumova, J., Dimarogonas, D., 2016. Multi-agent planning under local LTL specifications and event-based synchronization. Automatica 70, 239-248. https://doi.org/10.1016/j.automatica.2016.04.006

Ulusoy, A., Smith, S., Ding, X., Belta, C., 2012. Robust multi-robot optimal path planning with temporal logic constraints. In: ICRA 2012: IEEE Conference on Robotics and Automation. pp. 4693-4698. https://doi.org/10.1109/ICRA.2012.6224792

Wolper, P., Vardi, M., Sistla, A., 1983. Reasoning about infinite computation paths. In: Proc. of the 24th IEEE Symposium on Foundations of Computer Science. pp. 185-194. https://doi.org/10.1109/SFCS.1983.51

Yen, J.-Y., 1971. Finding the k shortest loopless paths in a network. Management Science 17 (11), 712-716. https://doi.org/10.1287/mnsc.17.11.712

Abstract Views

786
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912