Control de trayectorias basado en álgebra lineal

Autores/as

DOI:

https://doi.org/10.4995/riai.2020.13584

Palabras clave:

Control de trayectorias, control por prealimentación, control por realimentación, perturbaciones, incertidumbre en el modelo, control basado en modelo

Resumen

En este tutorial se resumen las principales características de una nueva metodología de diseño de sistemas de control para el seguimiento de trayectorias en procesos no lineales. Esta metodología, denominada LAB (Linear Algebra Based), fue presentada por los autores hace más de diez años y ha tenido una fuerte repercusión por su sencillez y facilidad de aplicación, si bien no es aplicable para algunos problemas de seguimiento en sistemas no lineales. Se exponen las etapas en el diseño de un controlador LAB, tanto en tiempo continuo como en discreto. La aplicación al control de la trayectoria de un robot móvil, en tiempo continuo, sirve para ilustrar el desarrollo e implementación del control. Se analizan algunas propiedades del sistema controlado y se resaltan las condiciones de aplicación. Numerosas referencias facilitan el desarrollo de algunas características y su aplicación en diversos campos de la robótica y del control de procesos en general.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

G. J. E. Scaglia, Universidad Nacional de San Juan

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ingeniería Química. Departamento de Ingeniería Química.

M. E. Serrano, Universidad Nacional de San Juan

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ingeniería Química. Departamento de Física.

P. Albertos, Universitat Politècnica de València

Instituto Universitário de Automática e Informática Industrial. Departamento de Ingeniería de Sistemas y Automática

Citas

Apostol, T., 1967. CALCULUS, One -Variable Calculus, with an introduction to Linear Algebra. Blaisdell Publishing Company.

Battilotti, S., Califano, C., 2004. A constructive condition for dynamic feedback linearization. Systems & control letters 52(5), 329-338. https://doi.org/10.1016/j.sysconle.2004.02.009

Bouhenchir, H., Cabassud, M., Le Lann, M.-V., 2006. Predictive functional control for the temperature control of a chemical batch reactor. Computers & Chemical Engineering 30 (6-7), 1141-1154. https://doi.org/10.1016/j.compchemeng.2006.02.014

Brockett, R., 1965. Poles, zeros, and feedback: State space interpretation. IEEE Transactions on Automatic Control 10(2), 129-135. https://doi.org/10.1109/TAC.1965.1098118

Charlet, B., Levine, J., Marino, R., 1988. Dynamic feedback linearization with application to aircraft control. Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA 1, 701-705.

Chwa, D., 2004. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE transactions on control systems technology 12 (4), 637-644. https://doi.org/10.1109/TCST.2004.824953

den Boom, T. J. J. V., 1998. On feedback linearization in LMI-based nonlinear MPC. In Proceedings of the 1998 American Control Conference 3, 1684-1688.

Devasia, S., Chen, D., B., P., 1996. Nonlinear inversion-based output tracking. IEEE Transactions on Automatic Control 41(7), 930-942. https://doi.org/10.1109/9.508898

Fernandez, M. C., Romoli, S., Pantano, M. N., Ortiz, O. A., Patiño, D., Scaglia,G. J., 2018. A new approach for nonlinear multivariable fed-batch bioprocess trajectory tracking control. Automatic Control and Computer Sciences 52 (1), 13-24. https://doi.org/10.3103/S0146411618010030

Francis, B. A., 1977. The linear multivariable regulator problem. SIAM Journal on Control and Optimization 15(3), 486-505. https://doi.org/10.1137/0315033

Fukao, T., Nakagawa, H., Adachi, N., 2000. Adaptive tracking control of a nonholonomic mobile robot. IEEE transactions on Robotics and Automation 16 (5), 609-615. https://doi.org/10.1109/70.880812

Gandolfo, D., Rosales, C., Patiño, D., Scaglia, G., Jordan, M., 2014. Trajectory tracking control of a pvtol aircraft based on linear algebra theory. Asian Journal of Control 16 (6), 1849-1858.

https://doi.org/10.1002/asjc.819

Ghandan, R., Blankenship, G. L., 1993. Adaptive approximate tracking and regulation of nonlinear systems. Proceedings of 32nd IEEE Conference on Decision and Control 1, 2654-2659.

Hepburn, J., Wonham, W., 1984. Error feedback and internal models on dierentiable manifolds. IEEE Transactions on Automatic Control 29(5), 397-403. https://doi.org/10.1109/TAC.1984.1103563

Huang, R., Zhu, J. J., 2009. Time-varying high-gain trajectory linearization observer design. Proceedings of American Control Conference 1, 4628-4635. https://doi.org/10.1109/ACC.2009.5160252

Isidori, A., Byrnes, C. I., 1990. Output regulation of nonlinear systems. IEEE transactions on Automatic Control, 35(2), 131-140. https://doi.org/10.1109/9.45168

Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., 1990. A stable tracking control method for an autonomous mobile robot. In: Proceedings. IEEE International Conference on Robotics and Automation. IEEE, pp. 384-389.

Khalil, H., 2002. Nonlinear Systems. Prentice Hall.

Lee, H. G., Arapostathis, A., I.Marcus, S., 2003. An algorithm for linearization of discrete-time systems via restricted dynamic feedback. In Proceedings of 42nd IEEE International Conference on Decision and Control 2, 1362-1367.

Levine, J., Marino, R., 1990. On dynamic feedback linearization in r/sup 4. In Proceedings 29th IEEE Conference on Decision and Control IEEE. Honolulu, Hawaii. 1, 2088-2090. https://doi.org/10.1109/CDC.1990.203992

Li, X. S., Li, Y. H., Li, X., Peng, J., Li, C. X., 2012. Robust trajectory linearization control design for unmanned aerial vehicle path following. Systems Engineering and Electronics 34(4), 767-772.

Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., Su, C.-Y., 2015. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46 (6), 740-749. https://doi.org/10.1109/TSMC.2015.2465352

Lustosa, L. R., Defaÿ, F., Moschetta, J. M., 2017. The feasibility issue in trajectory tracking by means of regions-of-attraction-based gain scheduling. IFAC-PapersOnLine 50(1), 11504-11508. https://doi.org/10.1016/j.ifacol.2017.08.1609

Moore, J., Cory, R., Tedrake, R., 2014. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees. Bioinspiration & biomimetics 9(2), 025013. https://doi.org/10.1088/1748-3182/9/2/025013

Panahandeh, P., Alipour, K., Tarvirdizadeh, B., Hadi, A., 2019. A kinematic lyapunov-based controller to posture stabilization of wheeled mobile robots. Mechanical Systems and Signal Processing 134, 106319. https://doi.org/10.1016/j.ymssp.2019.106319

Pantano, M. N., Fernandez, M. C., Serrano, M. E., Ortiz, O. A., Scaglia, G. J., 2018. Tracking control of optimal profiles in a nonlinear fed-catch bioprocess under parametric uncertainty and process disturbances. Industrial & Engineering Chemistry Research 57 (32), 11130-11140. https://doi.org/10.1021/acs.iecr.8b01791

Pantano, M. N., Fernández, M. C., Serrano, M. E., Ortíz, O. A., Scaglia, G. J. E., 2019. Trajectory tracking controller for a nonlinear fed-batch bioprocess. Revista Ingeniería Electrónica, Automática y Comunicaciones ISSN:1815-5928 38 (1), 78.

Proaño, P., Capito, L., Rosales, A., Camacho, O., 2015. Sliding mode control:Implementation like pid for trajectory-tracking for mobile robots. In: 2015 Asia-Pacific Conference on Computer Aided System Engineering. IEEE, pp.220-225. https://doi.org/10.1109/APCASE.2015.46

Rojas, O. J., Goodwin, G. C., 2001. Preliminary analysis of a nonlinear control scheme related to feedback linearization. In Proceedings of the 40th IEEE Conference on Decision and Control 2, 1743-1748.

Rosales, A., Scaglia, G., Mut, V., di Sciascio, F., 2009. Navegación de robots móviles en entornos no estructurados utilizando álgebra lineal. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(2), 79-88. https://doi.org/10.1016/S1697-7912(09)70096-2

Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M., Carelli, R., 2015. Trajectory tracking of a mini four-rotor helicopter in dynamic environments-a linear algebra approach. Robotica 33 (8), 1628-1652. https://doi.org/10.1017/S0263574714000952

Scaglia, G., Montoya, L. Q., Mut, V., di Sciascio, F., 2009. Numerical methods based controller design for mobile robots. Robotica 27 (2), 269-279. https://doi.org/10.1017/S0263574708004669

Scaglia, G., Quintero, O. L., Mut, V., di Sciascio, F., 2008. Numerical methods based controller design for mobile robots. IFAC Proceedings Volumes 41 (2), 4820 - 4827. https://doi.org/10.3182/20080706-5-KR-1001.00810

Scaglia, G., Serrano, E., Rosales, A., Albertos, P., 2015. Linear interpolation based controller design for trajectory tracking under uncertainties: Application to mobile robots. Control Engineering Practice 45, 123-132. https://doi.org/10.1016/j.conengprac.2015.09.010

Scaglia, G., Serrano, E., Rosales, A., Albertos, P., 2019. Tracking control design in nonlinear multivariable systems: Robotic applications. Mathematical Problems in Engineering 2019. https://doi.org/10.1155/2019/8643515

Scaglia, G., Serrano, M., Albertos, P., 2020. Linear Algebra Based Controllers: Design and Applications. Springer International Publishing. URL: https://books.google.es/books?id=ELzoDwAAQBAJ , https://doi.org/10.1007/978-3-030-42818-1

Serrano, M. E., Godoy, S. A., Quintero, L., Scaglia, G. J., 2017. Interpolation based controller for trajectory tracking in mobile robots. Journal of Intelligent & Robotic Systems 86 (3-4), 569-581. https://doi.org/10.1007/s10846-016-0422-4

Serrano, M. E., Scaglia, G. J., Godoy, S. A., Mut, V., Ortiz, O. A., 2013. Trajectory tracking of underactuated surface vessels: A linear algebra approach. IEEE Transactions on Control Systems Technology 22 (3), 1103-1111. https://doi.org/10.1109/TCST.2013.2271505

Silverman, L., 1968. Properties and application of inverse systems. IEEE transactions on Automatic Control 13(4), 436-437. https://doi.org/10.1109/TAC.1968.1098943

Silverman, L., 1969. Inversion of multivariable linear systems. IEEE transactions on Automatic Control 14(3), 270-276. https://doi.org/10.1109/TAC.1969.1099169

Sun, W., Tang, S., Gao, H., Zhao, J., 2016. Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Transactions on Control Systems Technology 24 (6), 2059-2069. https://doi.org/10.1109/TCST.2016.2519282

Xingling, S., Honglun, W., 2016. Trajectory linearization control based output tracking method for nonlinear uncertain system using linear extended state observer. Asian Journal of Control 18(1), 316-327. https://doi.org/10.1002/asjc.1053

Zeng, G., Hunt, L. R., 2000. Stable inversion for nonlinear discrete-time systems. IEEE Transactions on Automatic Control 45(6), 1216-1220. https://doi.org/10.1109/9.863610

Zhu, J. J., Banker, B., Hall, C., 2000. X-33 ascent flight control design by trajectory linearization-a singular perturbation approach. Proceedings of AIAA guidance, navigation, and control conference and exhibit 1, 4159. https://doi.org/10.2514/6.2000-4159

Zhu, J. J., Funston, K., Hall, C. E., Hodel, A. S., 2001. X-33 entry flight control design by trajectory linearization- a singular perturbation approach. Guidanceand control 1, 151-170. https://doi.org/10.2514/6.2000-4159

Zhu, L., Jiang, C. S., Xue, Y. L., 2008. Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neutral networks. Acta Armamentarii 29(1), 52-56.

Descargas

Publicado

30-09-2020

Cómo citar

Scaglia, G. J. E., Serrano, M. E. y Albertos, P. (2020) «Control de trayectorias basado en álgebra lineal», Revista Iberoamericana de Automática e Informática industrial, 17(4), pp. 344–353. doi: 10.4995/riai.2020.13584.

Número

Sección

Tutoriales