El control coalicional en el marco de la teoría de juegos cooperativos
DOI:
https://doi.org/10.4995/riai.2020.13456Palabras clave:
Control coalicional, control por agrupamiento, control distribuido, control optimo, realimentaciones lineales, teoría de juegos cooperativos, valor de Shapley, desigualdades matriciales linealesResumen
El control coalicional es una rama incipiente del control distribuido donde los distintos agentes se agrupan de forma dinámica en coaliciones en función de los enlaces de comunicación activos/inactivos en cada instante de tiempo. Gracias a ello, se reduce la carga de comunicación sin comprometer las prestaciones del sistema. En este tutorial, se analizan las principales características de estos esquemas dentro del marco de la teoría de juegos cooperativos, estando el juego definido por la función de coste a optimizar en el esquema de control, y correspondiendo los jugadores bien a los enlaces de comunicación o bien a los propios agentes. En este contexto, se estudiarán diversas herramientas de teoría de juegos cooperativos, con objeto de clasificar jugadores, imponer restricciones en los mismos, proponer vías de cálculo más eficientes, realizar particionado de sistemas, etc., examinando las características más relevantes presentadas por cada herramienta.
Descargas
Citas
Alamo, T., Normey-Rico, J. E., Arahal, M. R., Limon, D., Camacho, E. F., June 2006. Introducing linear matrix inequalities in a control course. In: Proceedings of the 7th IFAC Symposium on Advances in Control Education (ACE 2006). Madrid, Spain, pp. 205-210. https://doi.org/10.3182/20060621-3-ES-2905.00037
Algaba, E., Fragnelli, V., Sánchez-Soriano, J. (Eds.), December 2019. The Handbook of the Shapley Value. CRC Press Series in Operations Research. Chapman & Hall/CRC, Boca Ratón, Florida, USA. https://doi.org/10.1201/9781351241410
Aranda-Escolástico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sánchez, J., Dormido, S., March 2020. Event-based control: A bibliometric analysis of twenty years of research. IEEE Access 8, 47188-47208. https://doi.org/10.1109/ACCESS.2020.2978174
Baldivieso-Monasterios, P. R., Trodden, P. A., March 2021. Coalitional predictive control: Consensus-based coalition forming with robust regulation.Automatica 125, 109380. https://doi.org/10.1016/j.automatica.2020.109380
Banzhaf, J. F., 1965. Weighted voting doesn't work: A mathematical analysis. Rutgers Law Review 19, 317-343.
Barreiro-Gomez, J., Ocampo-Martinez, C., Quijano, N., March 2019. Time-varying partitioning for predictive control design: Density-games approach. Journal of Process Control 75, 1-14. https://doi.org/10.1016/j.jprocont.2018.12.011
Barreiro-Gomez, J., Ocampo-Martinez, C., Quijano, N., Maestre, J. M., September 2017. Non-centralized control for flow-based distribution networks: A game theoretical insight. Journ. of the Franklin Inst. 354 (14), 5771-5796. https://doi.org/10.1016/j.jfranklin.2017.06.021
Bauso, D., Cannon, M., April 2018. Consensus in opinion dynamics as a repeated game. Automatica 90, 204-211. https://doi.org/10.1016/j.automatica.2017.12.062
Bauso, D., Notarstefano, G., November 2015. Distributed n-player approachability and consensus in coalitional games. IEEE Transactions on Automatic Control 60 (11), 3107-3112. https://doi.org/10.1109/TAC.2015.2411873
Bauso, D., Timmer, J., March 2009. Robust dynamic cooperative games. International Journal of Game Theory 38 (1), 23-36. https://doi.org/10.1007/s00182-008-0138-1
Bauso, D., Timmer, J., October 2012. On robustness and dynamics in (un)balanced coalitional games. Automatica 48 (10), 2592-2596. https://doi.org/10.1016/j.automatica.2012.06.057
Becker, H.W., Riordan, J., April 1948. The arithmetic of Bell and Stirling numbers. American Journal of Mathematics 70 (2), 385-394. https://doi.org/10.2307/2372336
Borm, P., Owen, G., Tijs, S., August 1992. On the position value for communication situations. SIAM Journal on Discrete Mathematics 5 (3), 305-320. https://doi.org/10.1137/0405023
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, USA. https://doi.org/10.1137/1.9781611970777
Cai, K., Ishii, H., September 2011. Quantized consensus and averaging on gossip digraphs. IEEE Transactions on Automatic Control 56 (9), 2087-2100. https://doi.org/10.1109/TAC.2011.2107630
Camacho, E. F., Bordons, C., 2013. Model Predictive Control, 2nd Edition. Advances Textbooks in Control and Signal Processing. Springer, London, UK.
Carreras, F., Freixas, J., January 2002. Semivalue versatility and applications. Annals of Operations Research 109 (1-4), 343-358. https://doi.org/10.1023/A:1016320723186
Casella, G., Berger, R. L., 2002. Statistical Inference, 2nd Edition. Thomson Learning. Duxbury Advanced Series, Stamford, Connecticut, USA.
Castro, J., Gómez, D., Molina, E., Tejada, J., June 2017. Improving polynomial estimation of the shapley value by stratified random sampling with optimum allocation. Computers & Operations Research 82, 180-188. https://doi.org/10.1016/j.cor.2017.01.019
Castro, J., Gómez, D., Tejada, J., May 2009. Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research 36 (5), 1726-1730. https://doi.org/10.1016/j.cor.2008.04.004
Chanfreut, P., Maestre, J. M., Camacho, E. F., 2021a. Coalitional model predictive control on freeways traffic networks. IEEE Transactions on Intelligent Transportation Systems.En Prensa. https://doi.org/10.1109/TITS.2020.2994772
Chanfreut, P., Maestre, J. M., Ferramosca, A., Muros, F. J., Camacho, E. F.,2021b. Distributed model predictive control for tracking: A clustering approach. Submitted to the IEEE Trans. on Autom. Control.No publicado.
Chanfreut, P., Maestre, J. M., Muros, F. J., Camacho, E. F., 2021c. Clustering switching regions for feedback controllers: A convex approach. IEEE Transactions on Control of Network Systems.En Prensa.
Darivianakis, G., Eichler, A., Lygeros, J., 2020. Distributed model predictive control for linear systems with adaptive terminal sets. IEEE Transactions on Automatic Control 65 (3), 1044-1056. https://doi.org/10.1109/TAC.2019.2916774
De Souza, C. A., Camponogara, E., Kraus Jr.,W., Peccin, V. B., May/June 2015. Distributed MPC for urban traffic networks: A simulation-based performance analysis. Optimal Control Applications & Methods 36 (3), 353-368. https://doi.org/10.1002/oca.2148
Di Nardo, A., Di Natale, M., Giudicianni, C., Musmarra, D., Santonastaso, G. F., Simone, A., September 2015. Water distribution system clustering and partitioning based on social network algorithms. Procedia Engineering 119, 196-205. https://doi.org/10.1016/j.proeng.2015.08.876
Dörfler, F., Jovanovic, M. R., Chertkov, M., Bullo, F., September 2014. Sparsity-promoting optimal wide-area control of power networks. IEEE Transactions on Power Systems 29 (5), 2281-2291. https://doi.org/10.1109/TPWRS.2014.2304465
Dubey, P., Neyman, A., Weber, R. J., February 1981. Value theory without efficiency. Mathematics of Operations Research 6 (1), 122-128. https://doi.org/10.1287/moor.6.1.122
Ebihara, Y., Peaucelle, D., Arzelier, D., January 2014. LMI approach to linear positive system analysis and synthesis. Syst. & Control Letters 63, 50-56. https://doi.org/10.1016/j.sysconle.2013.11.001
Fele, F., Debada, E., Maestre, J. M., Camacho, E. F., September 2018. Coalitional control for self-organizing agents. IEEE Transactions on Automatic Control 63 (9), 2883-2897. https://doi.org/10.1109/TAC.2018.2792301
Fele, F., Maestre, J. M., Camacho, E. F., July 2015. Coalitional control: a bottom-up approach. In: Proceedings of the 33rd American Control Conference (ACC 2015). Chicago, Illinois, USA, pp. 4074-4079. https://doi.org/10.1109/ACC.2015.7171966
Fele, F., Maestre, J. M., Camacho, E. F., February 2017. Coalitional control: Cooperative game theory and control. IEEE Control Systems Magazine 37 (1), 53-69. https://doi.org/10.1109/MCS.2016.2621465
Fele, F., Maestre, J. M., Shahdany, M. H., Muñoz de la Peña, D., Camacho, E. F., April 2014. Coalitional model predictive control of an irrigation canal. Journal of Process Control 24 (4), 314-325. https://doi.org/10.1016/j.jprocont.2014.02.005
Fletcher, R., Leyer, S., May 1998. Numerical experience with lower bounds for MIQP branch-and-bound. SIAM Journal on Optimization 8 (2), 604-616. https://doi.org/10.1137/S1052623494268455
Fletscher, L. A., Maestre, J. M., Peroni, C. V., July 2018. Coalitional planningfor energy efficiency of HetNets powered by hybrid energy sources. IEEETransactions on Vehicular Technology 67 (7), 6573-6584. https://doi.org/10.1109/TVT.2018.2809639
Gahinet, P., Nemirovskii, A. S., Laub, A. J., Chilali, M., 1995. LMI Control Toolbox For Use with MATLAB. The MathWorks, Inc., Natick, Massa-chusetts, USA.
Ghintran, A., May 2013.Weighted position values. Mathematical Social Sciences 65 (3), 157-163. https://doi.org/10.1016/j.mathsocsci.2013.01.003
Gilles, R. P., April 2010. The Cooperative Game Theory of Networks and Hierarchies. Vol. 44 of Theory and Decision Library C. Springer, Heidelberg,Germany. https://doi.org/10.1007/978-3-642-05282-8
Gillies, D. B., 1959. Solutions to general non-zero-sum games. In: Tucker, A. W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, Princeton, New Jersey, USA, pp. 47-85. https://doi.org/10.1515/9781400882168-005
Ginsburgh, V., Zang, I., November 2012. Shapley ranking of wines. Journal of Wine Economics 7 (2), 169-180. https://doi.org/10.1017/jwe.2012.35
Han, Z., Niyato, D., Saad,W., Basar, T., Hjørungnes, A., 2012. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, New York, USA.
Harsanyi, J. C., 1959. A bargaining model for the n-person cooperative game. In: Tucker, A.W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, Princeton, New Jersey, USA, pp. 325-355. https://doi.org/10.1515/9781400882168-019
Hiller, T., 2016. Excluded coalitions and the distribution of power in parliaments. Applied Economics 48 (4), 321-330. https://doi.org/10.1080/00036846.2015.1078449
Hiller, T., January 2018. The effects of excluding coalitions. Games 9 (1), 1:1-1:7. https://doi.org/10.3390/g9010001
Ishii, H., Tempo, R., February 2010. Distributed randomized algorithms for the PageRank computation. IEEE Transactions on Automatic Control 55 (9), 1987-2002. https://doi.org/10.1109/TAC.2010.2042984
Jackson, M. O., 2008. Social and Economic Networks. Princeton University Press, Princeton, New Jersey, USA.
Jiang, Y., May 2019. Intermittent distributed control for a class of nonlinear reaction-diffusion systems with spatial point measurements. Journal of the Franklin Institute 356 (7), 3811-3830. https://doi.org/10.1016/j.jfranklin.2019.01.010
Kalai, E., Samet, D., September 1987. On weighted Shapley values. International Journal of Game Theory 16 (3), 205-222. https://doi.org/10.1007/BF01756292
Khmelnitskaya, A., Selcuk, Ö., Talman, D., January 2016. The Shapley value for directed graph games. Operations Research Letters 44 (1), 143-147. https://doi.org/10.1016/j.orl.2015.12.009
Lehrer, E., June 1988. An axiomatization of the Banzhaf value. International Journal of Game Theory 17 (2), 89-99. https://doi.org/10.1007/BF01254541
Loehman, E. T., Whinston, A. B., 1976. A generalized cost allocation scheme. In: Stevens, A., Lin, Y. (Eds.), Theory and Measurement of Economic Externalities. Academic Press, New York, USA, pp. 87-101. https://doi.org/10.1016/B978-0-12-450450-9.50013-0
Lopez-Rodriguez, F., Maestre, J. M., Muros, F. J., Camacho, E. F., July 2020. A modular feedback approach for distributed control. In: Proceedings of the 21st IFAC World Congress (IFAC 2020). Berlin, Germany, pp. 4086-4091.
Lucchetti, R., Moretti, S., Patrone, F., Radrizzani, P., August 2010. The Shapley and Banzhaf values in microarray games. Computers & Operations Research 37 (8), 1406-1412. https://doi.org/10.1016/j.cor.2009.02.020
Maestre, J. M., November 2010. Distributed model predictive control based on game theory. Ph.D. thesis, Department of Systems and Automation Engineering, University of Seville, Seville, Spain.
Maestre, J. M., Ishii, H., October 2017. A PageRank based coalitional control scheme. International Journal of Control, Automation and Systems 15 (5), 1983-1990. https://doi.org/10.1007/s12555-016-0336-8
Maestre, J. M., Lopez-Rodriguez, F., Muros, F. J., Ocampo-Martinez, C., February 2021. Modular feedback control of networked systems by clustering: A drinking water network case study. Processes 9 (2), 389. https://doi.org/10.3390/pr9020389
Maestre, J. M., Muñoz de la Peña, D., Camacho, E. F., Alamo, T., 2011. Distributed model predictive control based on agent negotiation. Journal of Process Control 21 (5), 685-697. https://doi.org/10.1016/j.jprocont.2010.12.006
Maestre, J. M., Muñoz de la Peña, D., Jiménez Losada, A., Algaba, E., Camacho, E. F., September/October 2014. A coalitional control scheme with applications to cooperative game theory. Optimal Control Applications and Methods 35 (5), 592-608. https://doi.org/10.1002/oca.2090
Maestre, J. M., Muros, F. J., Fele, F., Camacho, E. F., July 2015. An assessment of coalitional control in water systems. In: Proceedings of the 14th European Control Conference (ECC 2015). Linz, Austria, pp. 3291-3296. https://doi.org/10.1109/ECC.2015.7331041
Maestre, J. M., Negenborn, R. R. (Eds.), 2014. Distributed Model Predictive Control Made Easy. Vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-007-7006-5
Martin, J. G., Muros, F. J., Maestre, J. M., Camacho, E. F., 2020. Clustering for multi-robot task allocation problems by game theory. Submitted to the IEEE Transactions on Cybernetics. No publicado.
Marzband, M., Ardeshiri, R. R., Moafi, M., Uppal, H., June 2017. Distributed generation for economic benefit maximization through coalition formation-based game theory concept. International Transactions on Electrical Energy Systems 27 (6), e2313. https://doi.org/10.1002/etep.2313
Maschler, M., Solan, E., Zamir, S., March 2013. Game Theory. Cambridge University Press, Cambridge, UK.
Masero, E., Fletscher, L. A., Maestre, J. M., December 2020. A coalitional mo-del predictive control for the energy efficiency of next-generation cellular networks. Energies 13 (24), 6546. https://doi.org/10.3390/en13246546
Masero, E., Frejo, J. R. D., Maestre, J. M., Camacho, E. F., January 2021. Alight clustering model predictive control approach to maximize thermal power in solar parabolic-trough plants. Solar Energy 214, 531-541. https://doi.org/10.1016/j.solener.2020.11.056
Mitchell, M., 1998. An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts, USA. https://doi.org/10.7551/mitpress/3927.001.0001
Monroy, L., Fernández, F. R., April 2014. Banzhaf index for multiple voting systems. an application to the European Union. Annals of Operations Research 215, 215-230. https://doi.org/10.1007/s10479-013-1374-8
Muros, F. J., 2019. Cooperative Game Theory Tools in Coalitional Control Networks. Springer Theses Series. Springer, Zug, Switzerland. https://doi.org/10.1007/978-3-030-10489-4
Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., June/July 2016. Cooperative game theory tools to detect critical nodes in distributed control systems. In: Proceedings of the 15th European Control Conference (ECC 2016). Aalborg, Denmark, pp. 190-195. https://doi.org/10.1109/ECC.2016.7810285
Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., June 2017a. The Banzhaf value as a design tool in coalitional control. Systems & Control Letters 104, 21-30. https://doi.org/10.1016/j.sysconle.2017.03.007
Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., July 2017b. Harsanyi power solutions in coalitional control systems. IEEE Transactions on Automatic Control 62 (7), 3369-3381. https://doi.org/10.1109/TAC.2017.2651642
Muros, F. J., Maestre, J. M., 2020. Generalized framework for coalitional feedback control with semivalues constraints. Submitted to the Journal of the Franklin Institute. No publicado.
Muros, F. J., Maestre, J. M., Algaba, E., Alamo, T., Camacho, E. F., April 2017c. Networked control design for coalitional schemes using game-theoretic methods. Automatica 78, 320-332. https://doi.org/10.1016/j.automatica.2016.12.010
Muros, F. J., Maestre, J. M., Ocampo-Martinez, C., Algaba, E., Camacho, E. F., December 2018a. A game theoretical randomized method for large-scale systems partitioning. IEEE Access 6 (1), 42245-42263. https://doi.org/10.1109/ACCESS.2018.2854783
Muros, F. J., Maestre, J. M., Ocampo-Martinez, C., Algaba, E., Camacho, E. F., June 2018b. Partitioning of large-scale systems using game-theoretic coalitional methods. In: Proceedings of the 16th European Control Conference (ECC 2018). Limassol, Cyprus, pp. 2517-2522. https://doi.org/10.23919/ECC.2018.8550096
Narayanam, R., Narahari, Y., January 2011. A Shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering 8 (1), 130-147. https://doi.org/10.1109/TASE.2010.2052042
Nash, J. F., September 1951. Non-cooperative games. Annals of Mathematics 54 (2), 286-295. https://doi.org/10.2307/1969529
Nedic, A., Bauso, D., June 2013. Dynamic coalitional TU games: Distributed bargaining among players' neighbors. IEEE Transactions on Automatic Control 58 (6), 1363-1376. https://doi.org/10.1109/TAC.2012.2236716
Negenborn, R. R., De Schutter, B., Hellendoorn, J., April 2008. Multi-agent model predictive control for transportation networks: Serial versus parallel schemes. Engineering Applications of Artificial Intelligence 21 (3), 353-366. https://doi.org/10.1016/j.engappai.2007.08.005
Negenborn, R. R., van Overloop, P.-J., Keviczky, T., De Schutter, B., June 2009. Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media 4 (2), 359-380. https://doi.org/10.3934/nhm.2009.4.359
Nowak, A. S., March 1997. On an axiomatization of the Banzhaf value without the additivity axiom. International Journal of Game Theory 26 (1), 137-141. https://doi.org/10.1007/s001820050022
Núñez, A., Ocampo-Martinez, C., Maestre, J. M., Schutter, B. D., August 2015. Time-varying scheme for noncentralized model predictive control of large-scale systems. Mathematical Problems in Engineering 2015, 560702. https://doi.org/10.1155/2015/560702
Ocampo-Martinez, C., Bovo, S., Puig, V., June 2011. Partitioning approach oriented to the decentralised predictive control of large-scale systems. Journal of Process Control 21 (5), 775-786. https://doi.org/10.1016/j.jprocont.2010.12.005
Ocampo-Martinez, C., Puig, V., Cembrano, G., Quevedo, J., February 2013.Application of MPC strategies to the management of complex networks of the urban water cycle. IEEE Control Systems Magazine 33 (1), 15-41. https://doi.org/10.1109/MCS.2012.2225919
Olfati-Saber, R., Fax, J. A., Murray, R. M., January 2007. Consensus and cooperation in networked multi-agent systems. Proc. of the IEEE 95 (1), 215-233. https://doi.org/10.1109/JPROC.2006.887293
Olfati-Saber, R., Murray, R. M., September 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113
Owen, G., September 1978. Characterization of the Banzhaf-Coleman index. SIAM Journal of Applied Mathematics 35 (2), 315-327. https://doi.org/10.1137/0135026
Owen, G., 2013. Game Theory, 4th Edition. Emerald Group Publishing Limited, Bingley, UK.
Peleg, B., Sudhölter, P., October 2007. Introduction to the Theory of Cooperative Games. Theory and Decision Library C. Springer.
Penrose, L. S., 1946. The elementary statistics of majority voting. Journal of the Royal Statistical Society 109 (1), 53-57. https://doi.org/10.2307/2981392
Peters, H., June 2015. Game Theory. A Multi-Leveled Approach, 2nd Edition. Springer Texts in Business and Economics. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-46950-7
Petrosjan, L., Zaccour, G., January 2003. Time-consistent Shapley value allocation of pollution cost reduction. Journal of Economics Dynamics & Control 27 (3), 381-398. https://doi.org/10.1016/S0165-1889(01)00053-7
Philippe, M., Essick, R., Dullerud, G. E., Jungers, R. M., October 2016. Stability of discrete-time switching systems with constrained switching sequences. Automatica 72, 242-250. https://doi.org/10.1016/j.automatica.2016.05.015
Ren, W., Beard, R. W., May 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control 50 (5), 655-661. https://doi.org/10.1109/TAC.2005.846556
Riverso, S., Farina, M., Ferrari-Trecate, G., October 2013. Plug-and-play de-centralized model predictive control for linear systems. IEEE Transactions on Automatic Control 58 (10), 2608-2614. https://doi.org/10.1109/TAC.2013.2254641
Riverso, S., Farina, M., Ferrari-Trecate, G., August 2014. Plug-and-play model predictive control based on robust control invariant sets. Automatica 50 (8), 2179-2186. https://doi.org/10.1016/j.automatica.2014.06.004
Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Basar, T., September 2009. Coalitional game theory for communication networks. IEEE Signal Processing Magazine 26 (5), 77-97. https://doi.org/10.1109/MSP.2009.000000
Saad, W., Han, Z., Poor, H. V., Basar, T., September 2012. Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine 29 (5), 86-105. https://doi.org/10.1109/MSP.2012.2186410
Saracho, D., Muros, F. J., Maestre, J. M., July 2020. Ecient design of fault detection architectures for power networks by using game theory. In: Proceedings of the 21st IFAC World Congress (IFAC 2020). Berlin, Germany, pp. 13828-13833.
Scattolini, R., May 2009. Architectures for distributed and hierarchical model predictive control - A review. Journal of Process Control 19 (5), 723-731. https://doi.org/10.1016/j.jprocont.2009.02.003
Shapley, L. S., 1953a. Additive and non-additive set functions. Ph.D. thesis, Princeton University, New Jersey, USA.
Shapley, L. S., 1953b. A value for n-person games. In: Kuhn, H. W., Tucker, A. W. (Eds.), Contributions to the Theory of Games II. Annals of Mathematics Studies, vol. 28. Princeton University Press, Princeton, New Jersey, USA, pp. 307-317. https://doi.org/10.1515/9781400881970-018
Skogestad, S., Postlethwaite, I., August 2001. Multivariable Feedback Control- Analysis and Design, 2nd Edition. John Wiley and Sons, New York, USA.
Slikker, M., July 2005. A characterization of the position value. International Journal of Game Theory 33 (4), 505-514. https://doi.org/10.1007/s00182-005-0211-y
Sun, J., Tang, J., 2011. A survey of models and algorithms for social influence analysis. In: Aggarwal, C. C. (Ed.), Social Network Data Analytics. Springer, New York, USA, pp. 177-214. https://doi.org/10.1007/978-1-4419-8462-3_7
Tarashev, N., Tsatsaronis, K., Borio, C., May 2016. Risk attribution using the Shapley value: Methodology and policy applications. Review of Finance 20 (3), 1189-1213. https://doi.org/10.1093/rof/rfv028
Tarkowski, M. K., Szczepa'nski, P. L., Michalak, T. P., Harrenstein, P., Wooldridge, M., October 2018. Ecient computation of semivalues for gametheoretic network centrality. Journal of Artif. Intell. Research 63, 145-189. https://doi.org/10.1613/jair.1.11239
van den Brink, R., Borm, P., Hendrickx, R., Owen, G., June 2008. Characterizations of the beta- and the degree network power measure. Theory and Decision 64 (4), 519-536. https://doi.org/10.1007/s11238-007-9077-8
van den Brink, R., van der Laan, G., Pruzhansky, V., February 2011. Harsanyi power solutions for graph-restricted games. International Journal of Game Theory 40 (1), 87-110. https://doi.org/10.1007/s00182-009-0220-3
von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behaviour, Princeton University Press, Princeton, New Jersey, USA.
Witczak, M., Buciakowski, M., Puig, V., Rotondo, D., Nejjari, F., May 2016. An LMI approach to robust fault estimation for a class of nonlinear systems. International Journal of Robust and Nonlinear Control 26 (7), 1530-1548. https://doi.org/10.1002/rnc.3365
Xu, G., Driessen, T. S. H., Sun, H., April 2008. Matrix analysis for associated consistency in cooperative game theory. Linear Algebra and its Applications 428 (7), 1571-1586. https://doi.org/10.1016/j.laa.2007.10.002
Yazdanian, M., Mehrizi-Sani, A., November 2014. Distributed control techniques in microgrids. IEEE Transactions on Smart Grid 5 (6), 2901-2909. https://doi.org/10.1109/TSG.2014.2337838
Zhang, F., 2005. The Schur Complement and Its Applications. Vol. 4 of Numerical Methods and Algorithms. Springer, New York, USA. https://doi.org/10.1007/b105056
Zhang, G., Yang, K., Liu, P., Ding, E., February 2011. Achieving user cooperation diversity in TDMA-based wireless networks using cooperative game theory. IEEE Communication Letters 15 (2), 154-156. https://doi.org/10.1109/LCOMM.2011.122010.100629
Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., January 2020. Networked control systems: a survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica 7 (1), 1-17. https://doi.org/10.1109/JAS.2019.1911651
Zhang, Y.-J., Wang, A.-D., Da, Y.-B., November 2014. Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method. Energy Policy 74, 454-464. https://doi.org/10.1016/j.enpol.2014.08.006
Zio, E., 2013. The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Springer, London, UK. https://doi.org/10.1007/978-1-4471-4588-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)