Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico

J. D. Gil, L. Roca, M. Berenguel

Resumen

La destilación por membranas es un proceso de separación impulsado térmicamente en fase de investigación. Esta tecnología destaca principalmente por la simplicidad del proceso y su baja temperatura de operación, lo que permite que pueda ser alimentada con energía solar de media-baja temperatura. Así, la destilación por membranas se ha convertido en una solución prometedora, eficiente y sostenible para desarrollar plantas de desalación de pequeño o mediano tamaño en lugares aislados con buenas condiciones de radiación. No obstante, para que esta tecnología pueda llegar a ser implementada a escala industrial se debe seguir investigando y mejorando aspectos relacionados tanto con el diseño de las membranas y de los módulos como con la propia operación de estos. En relación con la operación, el desarrollo de modelos y técnicas de control cobran un papel fundamental. En este trabajo se presenta una revisión de las técnicas de control y modelado aplicadas en este campo, describiendo las principales metodologías empleadas y los retos futuros que quedan por abordar, incluyendo además un ejemplo ilustrativo.


Palabras clave

Modelado; control; destilación por membranas; desalación; energía solar térmica

Clasificación por materias

Ingeniería de control de control de procesos e instrumentación; Técnicas de control avanzado; Modelado, identificación, simulación y optimización de sistemas

Texto completo:

PDF

Referencias

Abdallah, S. B., Frikha, N., Gabsi, S., 2013. Simulation of solar vacuum membrane distillation unit. Desalination 324, 87–92. https://doi.org/10.1016/j.desal.2013.06.001

Alkhudhiri, A., Darwish, N., Hilal, N., 2012. Membrane distillation: A com- prehensive review. Desalination 287, 2–18. https://doi.org/10.1016/j.desal.2013.06.001

Alsaadi, A. S., Ghaffour, N., Li, J.-D., Gray, S., Francis, L., Maab, H., Amy, G. L., 2013. Modeling of air-gap membrane distillation process: A theoreti- cal and experimental study. Journal of Membrane Science 445, 53–65. https://doi.org/10.1016/j.memsci.2013.05.049

Amigo, J., Urtubia, R., Suárez, F., 2018. Exploring the interactions between hydrodynamics and fouling in membrane distillation systems–A multiscale approach using CFD. Desalination 444, 63–74. https://doi.org/10.1016/j.desal.2018.07.009

Andrés-Mañas, J., Roca, L., Ruiz-Aguirre, A., Acién, F., Gil, J. D., Zaragoza, G., 2020a. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Applied Energy 258, 114068. https://doi.org/10.1016/j.apenergy.2019.114068

Andrés-Mañas, J., Ruiz-Aguirre, A., Acién, F., Zaragoza, G., 2020b. Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination 475, 114202. https://doi.org/10.1016/j.desal.2019.114202

Åström, K. J., Hägglund, T., 2006. Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society Research Triangle.

Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M., 2007. Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 217 (1-3), 17–28. https://doi.org/10.1016/j.desal.2006.11.027

Bendevis, P., Karam, A., Laleg-Kirati, T.-M., 2020. Optimal model-free control of solar thermal membrane distillation system. Computers & Chemical Engineering 133, 106622. https://doi.org/ 10.1016/j.compchemeng.2019.106622

Boubakri, A., Hafiane, A., Bouguecha, S. A. T., 2014. Application of response surface methodology for modeling and optimization of membrane distillation desalination process. Journal of Industrial and Engineering Chemistry 20 (5), 3163–3169. https://doi.org/10.1016/j.jiec.2013.11.060

Bouguecha, S. T., Boubakri, A., Aly, S. E., Al-Beirutty, M. H., Hamdi, M. M., 2016. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach. Water Science and Technology 74 (1), 87–98. https://doi.org/10.2166/wst.2016.126

Camacho, E. F., Berenguel, M., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer. https://doi.org/10.1007/978-0-85729-916-1

Camacho, E. F., Bordons, C., 2004. Model Predictive Control. Springer-Verlag Ltd, London.

Cao, W., Liu, Q., Wang, Y., Mujtaba, I. M., 2016. Modeling and simulation of VMD desalination process by ANN. Computers & Chemical Engineering 84, 96–103. https://doi.org/10.1016/j.compchemeng.2015.08.019

Chafidz, A., Al-Zahrani, S., Al-Otaibi, M. N., Hoong, C. F., Lai, T. F., Prabu, M., 2014. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination 345, 36–49. https://doi.org/10.1016/j.desal.2014.04.017

Chang, H., Wang, G.-B., Chen, Y.-H., Li, C.-C., Chang, C.-L., 2010. Modeling and optimization of a solar driven membrane distillation desalination system. Renewable Energy 35 (12), 2714–2722. https://doi.org/10.1016/j.renene.2010.04.020

Chen, Y.-H., Li, Y.-W., Chang, H., 2012. Optimal design and control of solar driven air gap membrane distillation desalination systems. Applied Energy 100, 193–204. https://doi.org/10.1016/j.apenergy.2012.03.003

Cheng, D., Li, N., Zhang, J., 2018. Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination. Chemical Engineering Research and Design 132, 697–713. https://doi.org/10.1016/j.cherd.2018.02.017

Cipollina, A., Di Sparti, M., Tamburini, A., Micale, G., 2012. Development of a membrane distillation module for solar energy seawater desalination. Chemical Engineering Research and Design 90 (12), 2101–2121. https://doi.org/10.1016/j.cherd.2012.05.021

Demuth, H. B., Beale, M. H., De Jess, O., Hagan, M. T., 2014. Neural network design. PWS Publishing Co.

DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., Carpenter, D. O., 2015. Climate change and water scarcity: The case of Saudi Arabia. Annals of Global Health 81 (3), 342–353. https://doi.org/10.1016/j.aogh.2015.08.005

Deshmukh, A., Boo, C., Karanikola, V., Lin, S., Straub, A. P., Tong, T., War- singer, D. M., Elimelech, M., 2018. Membrane distillation at the waterenergy nexus: Limits, opportunities, and challenges. Energy & Environmental Science 11 (5), 1177–1196. https://doi.org/10.1039/c8ee00291f

Ding, Z., Liu, L., El-Bourawi, M. S., Ma, R., 2005. Analysis of a solar-powered membrane distillation system. Desalination 172 (1), 27–40. https://doi.org/10.1016/j.desal.2004.06.195

Dow, N., Duke, M., Zhang, J., O’Rielly, T., Li, J., Gray, S., Ostarcevic, E., Atherton, P., 2010. Demonstration of solar driven membrane distillation in remote Victoria. In: Australian Water Association (AWA) Ozwater Conference and Exhibition, Brisbane, Australia. Vol. 810.

Duffie, J. A., Beckman, W. A., 2013. Solar engineering of thermal processes. John Wiley & Sons. https://doi.org/10.1002/9781118671603

Eleiwi, F., Ghaffour, N., Alsaadi, A. S., Francis, L., Laleg-Kirati, T. M., 2016. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination 384, 1–11. https://doi.org/10.1016/j.desal.2016.01.004

Elzahaby, A. M., Kabeel, A., Bassuoni, M., Elbar, A. R. A., 2016. Direct contact membrane water distillation assisted with solar energy. Energy Conversion and Management 110, 397–406. https://doi.org/10.1016/j.enconman.2015.12.046

Esfandiari, A., Monjezi, A. H., Rezakazemi, M., Younas, M., 2019. Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process. Applied Thermal Engineering 163, 114391. https://doi.org/ 10.1016/j.applthermaleng.2019.114391

Fadhil, S., Alsalhy, Q. F., Makki, H. F., Ruby-Figueroa, R., Marino, T., Criscuoli, A., Macedonio, F., Giorno, L., Drioli, E., Figoli, A., 2019. Seawater desalination using PVDF-HFP membrane in DCMD process: Assessment of operating condition by response surface method. Chemical Engineering Communications 206 (2), 237–246. https://doi.org/10.1080/00986445.2018.1483349

Gabsi, S., Frikha, N., Chaouachi, B., 2013. Performance of a solar vacuum membrane distillation pilot plant, for seawater desalination in Mahares, Tunisia. International Journal of Water Resources and Arid Environments 2 (4), 213–217.

Ghaffour, N., Soukane, S., Lee, J.-G., Kim, Y., Alpatova, A., 2019. Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy 254, 113698. https://doi.org/10.1016/j.apenergy.2019.113698

Gil, J. D., Á lvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019a. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791

Gil, J. D., Mendes, P. R., Andrade, G., Roca, L., Normey-Rico, J. E., Berenguel, M., 2019b. Hybrid NMPC applied to a solar-powered membrane distillation system. IFAC-PapersOnLine 52 (1), 124 – 129, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. https://doi.org/10.1016/j.ifacol.2019.06.048

Gil, J. D., Roca, L., Ruiz-Aguirre, A., Zaragoza, G., Berenguel, M., 2018a. Optimal operation of a solar membrane distillation pilot plant via nonlinear model predictive control. Computers & Chemical Engineering 109, 151– 165. https://doi.org/ 10.1016/j.compchemeng.2017.11.012

Gil, J. D., Roca, L., Zaragoza, G., Berenguel, M., 2018b. A feedback control system with reference governor for a solar membrane distillation pilot facility. Renewable Energy 120, 536–549. https://doi.org/10.1016/j.renene.2017.12.107

Gil, J. D., Ruiz-Aguirre, A., Roca, L., Zaragoza, G., Berenguel, M., 2018c. Pre- diction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants. Desalination 445, 15– 28. https://doi.org/10.1016/j.desal.2018.07.022

González, D., Amigo, J., Suárez, F., 2017. Membrane distillation: Perspectives for sustainable and improved desalination. Renewable and Sustainable Energy Reviews 80, 238–259. https://doi.org/10.1016/j.rser.2017.05.078

Guillén-Burrieza, E., Alarcón-Padilla, D.-C., Palenzuela, P., Zaragoza, G., 2015. Techno-economic assessment of a pilot-scale plant for solar desalination based on existing plate and frame MD technology. Desalination 374, 70–80. https://doi.org/10.1016/j.desal.2015.07.014

Guillén-Burrieza, E., Blanco, J., Zaragoza, G., Alarcón, D.-C., Palenzuela, P., Ibarra, M., Gernjak, W., 2011. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science 379 (1-2), 386–396. https://doi.org/10.1016/j.memsci.2011.06.009

Guo, X., Albalawi, F., Laleg-Kirati, T.-M., 2020. Observer-based economic model predictive control for direct contact membrane distillation. Chemical Engineering Research and Design 156, 86–99. https://doi.org/10.1016/j.cherd.2020.01.027

Gustafson, R. D., Murphy, J. R., Achilli, A., 2016. A stepwise model of direct contact membrane distillation for application to large-scale systems: Experimental results and model predictions. Desalination 378, 14–27. https://doi.org/0.1016/j.desal.2015.09.022

Hayer, H., Bakhtiari, O., Mohammadi, T., 2015. Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach. Journal of Industrial and Engineering Chemistry 21, 1379–1382. https://doi.org/10.1016/j.jiec.2014.06.009

He, Q., Li, P., Geng, H., Zhang, C., Wang, J., Chang, H., 2014. Modeling and optimization of air gap membrane distillation system for desalination. Desalination 354, 68–75. https://doi.org/10.1016/j.desal.2014.09.022

Hill, W. J., Hunter, W. G., 1966. A review of response surface methodology: A literature survey. Technometrics 8 (4), 571–590. https://doi.org/10.2307/1266632

Hitsov, I., Eykens, L., De Schepper, W., De Sitter, K., Dotremont, C., Nopens, I., 2017. Full-scale direct contact membrane distillation (DCMD) model including membrane compaction effects. Journal of Membrane Science 524, 245–256. https://doi.org/10.1016/j.memsci.2016.11.044

Hitsov, I., Maere, T., De Sitter, K., Dotremont, C., Nopens, I., 2015. Modelling approaches in membrane distillation: A critical review. Separation and Purification Technology 142, 48–64. https://doi.org/10.1016/j.seppur.2014.12.026

Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., Kang, S.-m., 2018. The state of desalination and brine production: A global outlook. Science of the Total Environment 657, 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

Karam, A. M., Alsaadi, A. S., Ghaffour, N., Laleg-Kirati, T. M., 2017. Analysis of direct contact membrane distillation based on a lumped-parameter dyna- mic predictive model. Desalination 402, 50–61. https://doi.org/0.1016/j.desal.2016.09.002

Karam, A. M., Laleg-Kirati, T. M., 2015. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking. In: 2015 IEEE Conference on Control Applications (CCA). IEEE, pp. 1618–1623. https://doi.org/10.1109/CCA.2015.7320841

Karam, A. M., Laleg-Kirati, T. M., 2016. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis. Journal of Process Control 47, 87–97. https://doi.org/10.1016/j.jprocont.2016.08.001

Karanikola, V., Corral, A. F., Jiang, H., Saéz, A. E., Ela, W. P., Arnold, R. G., 2015. Sweeping gas membrane distillation: numerical simulation of mass and heat transfer in a hollow fiber membrane module. Journal of Membrane Science 483, 15–24. https://doi.org/10.1016/j.memsci.2015.02.010

Khalifa, A. E., Lawal, D. U., 2016. Application of response surface and Taguchi optimization techniques to air gap membrane distillation for water desalination: A comparative study. Desalination and Water Treatment 57 (59), 28513–28530. https://doi.org/0.1080/19443994.2016.1189850

Khayet, M., Cojocaru, C., 2012a. Air gap membrane distillation: Desalination, modeling and optimization. Desalination 287, 138–145. https://doi.org/10.1016/j.desal.2011.09.017

Khayet, M., Cojocaru, C., 2012b. Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Separation and Purification Technology 86, 171–182. https://doi.org/10.1016/j.seppur.2011.11.001

Khayet, M., Cojocaru, C., 2013. Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination 308, 102–110. https://doi.org/10.1016/j.desal.2012.06.023

Khayet, M., Cojocaru, C., García-Payo, C., 2007. Application of response sur- face methodology and experimental design in direct contact membrane distillation. Industrial & Engineering Chemistry Research 46 (17), 5673–5685. https://doi.org/10.1021/ie070446p

Khayet, M., Matsuura, T., 2011. Membrane distillation: Principles and applications. Elsevier. https://doi.org/10.1016/B978-0-444-53126-1.10012-0

Kim, Y., Thu, K., Choi, S.-H., 2015. Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination 367, 161– 171. https://doi.org/10.1016/j.desal.2015.04.003

Koschikowski, J., Wieghaus, M., Rommel, M., Ortin, V. S., Suarez, B. P., Rodríguez, J. R. B., 2009. Experimental investigations on solar driven standalone membrane distillation systems for remote areas. Desalination 248 (1- 3), 125–131. https://doi.org/10.1016/j.desal.2008.05.047

Luo, A., Lior, N., 2016. Critical review of membrane distillation performance criteria. Desalination and Water Treatment 57 (43), 20093–20140. https://doi.org/10.1080/19443994.2016.1152637

Mercader, P., Cánovas, C., Baños, A., 2019. Control PID multivariable de una caldera de vapor. Revista Iberoamericana de Automática e Informática industrial 16 (1), 15–25. https://doi.org/10.4995/riai.2018.9034

Miladi, R., Frikha, N., Kheiri, A., Gabsi, S., 2019. Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Conversion and Management 185, 143–154. https://doi.org/10.1016/j.enconman.2019.02.011

Mohammadi, T., Kazemi, P., Peydayesh, M., 2015. Optimization of vacuum membrane distillation parameters for water desalination using Box– Behnken design. Desalination and Water Treatment 56 (9), 2306–2315. https://doi.org/10.1080/19443994.2014.961173

Perfilov, V., Fila, V., Marcano, J. S., 2018. A general predictive model for sweeping gas membrane distillation. Desalination 443, 285–306. https://doi.org/10.1016/j.desal.2018.06.007

Porrazzo, R., Cipollina, A., Galluzzo, M., Micale, G., 2013. A neural network- based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Computers & Chemical Engineering 54, 79–96. https://doi.org/ 10.1016/j.compchemeng.2013.03.015

Rodríguez-Blanco, T., Sarabia, D., de Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133–144. https://doi.org/10.4995/riai.2017.8846

Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial 15 (3), 327–338. https://doi.org/10.4995/riai.2018.8944

Ruiz-Aguirre, A., Alarcón-Padilla, D.-C., Zaragoza, G., 2015. Productivity analysis of two spiral-wound membrane distillation prototypes coupled with solar energy. Desalination and Water Treatment 55 (10), 2777–2785. https://doi.org/10.1080/19443994.2014.946711

Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2017. Modeling and optimization of a commercial permeate gap spiral wound membrane distillation module for seawater desalination. Desalination 419, 160–168. https://doi.org/10.1016/j.desal.2017.06.019

Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2018. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology 205, 212–222. https://doi.org/10.1016/j. seppur.2018.05.044

Ruiz-Aguirre, A., Andrés-Mañas, J. A., Zaragoza, G., 2019. Evaluation of permeate quality in pilot scale membrane distillation systems. Membranes 9 (6), 69. https://doi.org/10.3390/membranes9060069

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., et al., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences 111 (9), 3245–3250. https://doi.org/10.1073/pnas.1222460110

Shirazian, S., Alibabaei, M., 2017. Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process. Neural Computing and Applications 28 (8), 2099–2104. https://doi.org/10.1007/s00521-016-2184-0

Tang, N., Zhang, H., Wang, W., 2011. Computational fluid dynamics numerical simulation of vacuum membrane distillation for aqueous NaCl solution. Desalination 274 (1-3), 120–129. https://doi.org/10.1016/j.desal.2011.01.078

Tavakolmoghadam, M., Safavi, M., 2012. An optimized neural network model of desalination by vacuum membrane distillation using genetic algorithm. Procedia Engineering 42, 106–112. https://doi.org/10.1016/j.proeng.2012.07.400

Thomas, N., Mavukkandy, M. O., Loutatidou, S., Arafat, H. A., 2017. Mem- brane distillation research & implementation: Lessons from the past five decades. Separation and Purification Technology 189, 108–127. https://doi.org/10.1016/j.seppur.2017.07.069

Wang, P., Chung, T.-S., 2015. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science 474, 39–56. https://doi.org/10.1016/j.memsci.2014.09.016

WHO, 2011. Guidelines for drinking-water quality. World Health Organization, Chronicle 38 (4), 104–8.

Winter, D., 2015. Membrane distillation: A thermodynamic, technological and economic analysis. Shaker Verlag.

Yang, C., Peng, X., Zhao, Y., Wang, X., Fu, J., Liu, K., Li, Y., Li, P., 2020. Prediction model to analyze the performance of VMD desalination process. Computers & Chemical Engineering 132, 106619. https://doi.org/10.1016/j.compchemeng.2019.106619

Yu, H., Yang, X., Wang, R., Fane, A. G., 2011. Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science 384 (1-2), 107–116. https://doi.org/10.1016/j.memsci.2011.09.011

Zaragoza, G., Ruiz-Aguirre, A., Guillén-Burrieza, E., 2014. Efficiency in the use of solar thermal energy of small membrane desalination systems for de- centralized water production. Applied Energy 130, 491–499. https://doi.org/10.1016/j.apenergy.2014.02.024

Zhang, L., Xiang, J., Cheng, P. G., Tang, N., Han, H., Yuan, L., Zhang, H., Wang, S., Wang, X., 2015. Three-dimensional numerical simulation of aqueous NaCl solution in vacuum membrane distillation process. Chemical Engineering and Processing: Process Intensification 87, 9–15. https://doi.org/10.1016/j.cep.2014.11.002.

Abstract Views

564
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912