Optimización dinámica basada en Fourier. Aplicación al proceso de biodiesel

Autores/as

  • M. N. Pantano Instituto de Ingeniería Química, Universidad Nacional de San Juan (UNSJ), CONICET, Av. Libertador San Martín (O) 1109, San Juan J5400ARL
  • M. C. Fernández Instituto de Ingeniería Química, Universidad Nacional de San Juan (UNSJ), CONICET, Av. Libertador San Martín (O) 1109, San Juan J5400ARL
  • L. Rodríguez Instituto de Ingeniería Química, Universidad Nacional de San Juan (UNSJ), CONICET, Av. Libertador San Martín (O) 1109, San Juan J5400ARL
  • G. J.E. Scaglia Instituto de Ingeniería Química, Universidad Nacional de San Juan (UNSJ), CONICET, Av. Libertador San Martín (O) 1109, San Juan J5400ARL

DOI:

https://doi.org/10.4995/riai.2020.12920

Palabras clave:

Control óptimo, parametrización, sistemas no lineales, sistemas de energía renovable, trayectoria óptima

Resumen

Este trabajo presenta una novedosa metodología para la optimización dinámica del proceso de producción de biodiesel a partir de aceites vegetales en modo discontinuo. La metodología propuesta tiene la particularidad de emplear la serie de Fourier para la parametrización de la acción de control, y algoritmos evolutivos para la optimización de parámetros. Las ventajas principales de esta estrategia son, por un lado, que los perfiles obtenidos son suaves, es decir, continuos y diferenciables, por lo tanto pueden implementarse directamente en sistemas reales, sin necesidad de filtrar o suavizar la señal de control; por otro lado, se requiere una mínima cantidad de parámetros para la optimización, evitando la sobre-parametrización, la cual puede disminuir la calidad de la respuesta. Los algoritmos propuestos han sido evaluados a través de simulaciones, obteniendo resultados muy satisfactorios comparados con los existentes en bibliografía.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Benavides, P. T. & Diwekar, U., 2012a. Optimal control of biodiesel production in a batch reactor: Part I: Deterministic control. Fuel,94, 211- 217. https://doi.org/10.1016/j.fuel.2011.08.035

Benavides, P. T. & Diwekar, U., 2012b. Optimal control of biodiesel production in a batch reactor: Part II: Stochastic control. Fuel,94, 218-226. https://doi.org/10.1016/j.fuel.2011.08.033

Brásio, A. S., Romanenko, A., Leal, J., Santos, L. O. & Fernandes, N. C., 2013. Nonlinear model predictive control of biodiesel production via transesterification of used vegetable oils. Journal of Process Control,10,23, 1471-1479. https://doi.org/10.1016/j.jprocont.2013.09.023

Cantrell, D. G., Gillie, L. J., Lee, A. F. & Wilson, K., 2005. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General,2,287, 183-190. https://doi.org/10.1016/j.apcata.2005.03.027

Fernández, Cecilia, M., Nadia Pantano, M., Rossomando, F. G., Alberto Ortiz, O. & Scaglia, G. J., 2019. State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system. Brazilian Journal of Chemical Engineering,1,36, 421-437. https://doi.org/10.1590/0104-6632.20190361s20170379

Fernández, C., Pantano, N., Godoy, S., Serrano, E. & Scaglia, G., 2019a. Optimización de Parámetros Utilizando los Métodos de Monte Carlo y Algoritmos Evolutivos. Aplicación a un Controlador de Seguimiento de Trayectoria en Sistemas no Lineales. Revista Iberoamericana de Automática e Informática industrial,1,16, 89-99. https://doi.org/10.4995/riai.2018.8796

Fernández M. C., P. M. N., Rodriguez L., Scaglia G., 2020. State Estimation and Nonlinear Tracking Control Simulation Approach. Application to a Bioethanol Production System. Bioprocess and Biosystems Engineering,In press.

Fernández, M. C., Pantano, M. N., Machado, R. A. F., Ortiz, O. A. & Scaglia, G. J., 2019b. Nonlinear multivariable tracking control: application to an ethanol process. International Journal of Automation and Control,4,13, 440-468. https://doi.org/10.1504/IJAAC.2019.10020240

Fernández, M. C., Pantano, M. N., Rómoli, S., Patiño, H. D., Ortiz, O. A. & Scaglia, G. J., 2019c. An algebra approach for nonlinear multivariable fedbatch bioprocess control. International Journal of Industrial and Systems Engineering,1,33, 38-57. https://doi.org/10.1504/IJISE.2019.10023564

Fernández, M. C., Pantano, M. N., Serrano, E. & Scaglia, G., 2020. Multivariable Tracking Control of a Bioethanol Process under Uncertainties. Mathematical Problems in Engineering,2020. https://doi.org/10.1155/2020/8263690

Ho, Y., Mjalli, F. & Yeoh, H., 2010. Multivariable adaptive predictive model based control of a biodiesel transesterification reactor. Journal of Applied Sciences,12,10, 1019-1027. https://doi.org/10.3923/jas.2010.1019.1027

Ignat, R. M. & Kiss, A. A., 2013. Optimal design, dynamics and control of a reactive DWC for biodiesel production. Chemical Engineering Research and Design,9,91, 1760-1767. https://doi.org/10.1016/j.cherd.2013.02.009

Kreyszig, E. 1978. Introductory functional analysis with applications, Wiley New York.

Mjalli, F. S., Kim San, L., Chai Yin, K. & Azlan Hussain, M., 2009. Dynamics and control of a biodiesel transesterification reactor. Chemical Engineering & Technology,1,32, 13-26. https://doi.org/10.1002/ceat.200800243

Nagle, R. K., Saff, E. B. & Snider, A. D. 2001. Ecuaciones diferenciales y problemas con valores en la frontera, Pearson Educación.

Nasir, N., Daud, W. R. W., Kamarudin, S. & Yaakob, Z., 2013. Process system engineering in biodiesel production: A review. Renewable and Sustainable Energy Reviews,22, 631-639. https://doi.org/10.1016/j.rser.2013.01.036

Nearing, J., 2006. Mathematical tools for physics.

Pantano, M. N., Fernández, M. C., Serrano, M. E., Ortiz, O. A. & Scaglia, G. J. E., 2018. Tracking Control of Optimal Profiles in a Nonlinear Fed-Batch Bioprocess under Parametric Uncertainty and Process Disturbances. Industrial & Engineering Chemistry Research,32,57, 11130-11140.

https://doi.org/10.1021/acs.iecr.8b01791

Pantano, M. N., Serrano, M. E., Fernández, M. C., Rossomando, F. G., Ortiz, O. A. & Scaglia, G. J., 2017. Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation. Industrial & Engineering Chemistry Research,20,56, 6043- 6056. https://doi.org/10.1021/acs.iecr.7b00831

Rajarathinam, K., Gomm, J. B., Yu, D.-L. & Abdelhadi, A. S., 2016. PID controller tuning for a multivariable glass furnace process by genetic algorithm. International Journal of Automation and Computing,1,13, 64- 72. https://doi.org/10.1007/s11633-015-0910-1

Salvi, B. & Panwar, N., 2012. Biodiesel resources and production technologies-A review. Renewable and Sustainable Energy Reviews,6,16, 3680-3689. https://doi.org/10.1016/j.rser.2012.03.050

Santori, G., Di Nicola, G., Moglie, M. & Polonara, F., 2012. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Applied energy,92, 109-132. https://doi.org/10.1016/j.apenergy.2011.10.031

Tempo, R. & Ishii, H., 2007. Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control: An Introduction. European Journal of Control,2-3,13, 189-203. https://doi.org/10.3166/ejc.13.189-203

Wali, W., Al-Shamma'a, A., Hassan, K. H. & Cullen, J., 2012. Online geneticANFIS temperature control for advanced microwave biodiesel reactor. Journal of Process Control,7,22, 1256-1272. https://doi.org/10.1016/j.jprocont.2012.05.013

Wali, W., Hassan, K., Cullen, J., Shaw, A. & Al-Shamma'a, A., 2013. Real time monitoring and intelligent control for novel advanced microwave biodiesel reactor. Measurement,1,46, 823-839. https://doi.org/10.1016/j.measurement.2012.10.004

Zhang, M., Gao, Z., Zheng, T., Ma, Y., Wang, Q., Gao, M. & Sun, X., 2016. A bibliometric analysis of biodiesel research during 1991-2015. Journal of Material Cycles and Waste Management, 1-9. https://doi.org/10.1007/s10163-016-0575-z

Zhang, Y., Dube, M., McLean, D. & Kates, M., 2003. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource technology,1,89, 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3

Descargas

Publicado

23-12-2020

Cómo citar

Pantano, M. N., Fernández, M. C., Rodríguez, L. y Scaglia, G. J. (2020) «Optimización dinámica basada en Fourier. Aplicación al proceso de biodiesel», Revista Iberoamericana de Automática e Informática industrial, 18(1), pp. 32–38. doi: 10.4995/riai.2020.12920.

Número

Sección

Artículos