Transporte multi-AGV de una carga: estado del arte y propuesta centralizada

Autores/as

  • F. Espinosa Universidad de Alcalá
  • C. Santos Universidad de Alcalá
  • J. E. Sierra-García Universidad de Burgos ASTI Mobile Robotics

DOI:

https://doi.org/10.4995/riai.2020.12846

Palabras clave:

AGVs, vehículo de guiado automático, unidad de transporte omnidireccional, transporte cooperativo, control industrial, sector industrial

Resumen

Un vehículo de guiado automático (Automatic Guided Vehicle –AGV-en inglés) es un sistema de transporte industrial completamente automatizado y alimentado por baterías. Estos vehículos son ampliamente utilizados en el sector industrial para sustituir a carretillas manuales y cintas transportadoras. El reto de la utilización de AGVs como agentes de transporte en entornos industriales pasa por dotarles de la inteligencia suficiente para desarrollar tareas colaborativas. Dentro de estas tareas colaborativas se diferencia el transporte multi-AGV de un objeto del transporte multi-AGV de múltiples objetos. Este trabajo presenta el estado del arte de las soluciones de transporte cooperativo de un objeto entre varios AGVs. Para ello, se revisan los fundamentos teóricos y se clasifican y describen varias propuestas para su resolución. Finalmente se propone una solución de control remoto centralizado para el transporte de una carga con AGVs omnidireccionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adăscăliţei, F., and Doroftei, I. 2011. Practical Applications for Mobile Robots based on Mecanum Wheels - A Systematic Survey. The Romanian Review Precision Mechanics, Optics & Mechatronics, nº 40.

Alonso-Mora, J., Barker, S. and Rus, D. 2017. Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research. August 10. https://doi.org/10.1177/0278364917719333

Adreasson, H., Bourguerra, A., Driankov, D. and Karlsson. L. 2015. Autonomous Transport Vehicles: Where We Are and What Is Missing. IEEE Robotics & Automation Magazine · March 2015. https://doi.org/10.1109/MRA.2014.2381357

Amoozgar, M. and Zhang, Y. 2012. Trajectory tracking of wheeled mobile robots: A kinematical approach. Mechatronics and Embedded Systems and Applications (MESA), 2012 IEEE/ASME International Conference on, 2012, pp. 275- 280. https://doi.org/10.1109/MESA.2012.6275574

Bahíllo, A. y otros, 2019. Libro blanco sobre espacios inteligentes y tecnologías de posicionamiento y navegación en entornos de interior. Editorial: Universidad de Alcalá. ISBN: 978-84-17729-47-9.

Berman, S. and Edan Y. 2002. Decentralized autonomous AGV system for material handling. International Journal of Production Research 40(15):3995-4006 https://doi.org/10.1080/00207540210146990

Borenstein, J., 1995. Control and Kinematic Design of Multi-Degree-ofFreedom Mobile Robots with Compliant Linkage. IEEE Trans. On Robotis and Automation. Vol. 1 I , nº I. https://doi.org/10.1109/70.345935

Borenstein, J., 2000. The OmniMate: a guidewire and beacon-free AGV for highly reconfigurable applications. Int. Journal of Production Research. Vol. 38, nº 9, June 15, 2000. https://doi.org/10.1080/002075400188456

Bostel, A.J. and Sagar, V,K. 1996. Dynamic control systems for AGVs. Engineering. https://doi.org/10.1049/cce:19960403

Brown, R., and Jennings, J., 1995. A pusher/steerer model for strongly cooperative mobile robot manipulation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots 3, 562-568

Butdee, S., Vignat, F., Suebsomran, A. and Yarlagadda, P.K. 2009. Estimation and control of an automated guided vehicle. International Journal of Mechatronics and Manufacturing Systems 2(3). https://doi.org/10.1504/IJMMS.2009.026053

Cameron, S. and Probert, P. 1994. Advanced Guided Vehicles: Aspects of the Oxford AGV Project. ISBN: 981-02-1393-X. https://doi.org/10.1142/2022

Chen, X. and Li, Y., 2006. "Cooperative Transportation by Multiple Mobile Manipulators Using Adaptive NN Control". In 2006 International Joint Conference on Neural Networks.

Chiacchio P. and Chiaverini S., 1997. Complex Robotic Systems. Springer. https://doi.org/10.1007/BFb0035182

Choi, S.K., Easterday, O.T. 2001. An Underwater Vehicle Monitoring System and Its Sensors. Lecture Notes in Control and Information Sciences. Experimental robotics. Springer-Verlag. Pp551-560. ISBN 3-540-42104-1. https://doi.org/10.1007/3-540-45118-8_55

Digani, V., Sabattini, L., Secchi, C., Fantuzzi, C., 2014. Hierarchical Traffic Control for Partially De-centralized Coordination of Multi AGV Systems in Industrial Environments. IEEE Inter-national Conference on Robotics & Automation (ICRA). https://doi.org/10.1109/ICRA.2014.6907764

Esposito, J. M., Feemster, M. G., Smith, E., 2008. Cooperative manipulation on the water using a swarm of autonomous tugboats. in Proc. 2008 IEEE Int. Conf. on Robotics and Automation, pp. 1501-1506. https://doi.org/10.1109/ROBOT.2008.4543414

Habibi, G., Kingston, Z., Xie, W., Jellins, M., McLurkin, J., 2015. Distributed Centroid Estimation and Motion Controllers for Collective Transport by Multi-Robot Systems. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2015.7139356

Seattle, Washington Hasimoto, M. and Oba, F., 1993. Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. Proceedings of the 1993 IEEE./RSJ lntemational Conference on lntelligent Robots and Systems Yokohama, Japan July 26-30, 1993

Hichri, B., Adouane, L., Fauroux, J.C., Mezouar, Y. and Doroftei, I. Cooperative Mobile Robot Control Architecture for Lifting and Transportation of Any Shape Payload. Chapter book of Distributed Autonomous Robotic Systems pp 177-191. ISBN 978-4-431-55877-4. https://doi.org/10.1007/978-4-431-55879-8_13

Hirata, Y., Kosuge, K., 2001. Motion Control of Distributed Robot Helpers Transporting a Single Object in Cooperation with a Human. Lecture Notes in Control and Information Sciences. Experimental robotics. SpringerVerlag. Pp. 313-322. ISBN 3-540-42104-1 https://doi.org/10.1007/3-540-45118-8_32

Karim, N.A. and Ardestani, M.A. 2016. Takagi-Sugeno Fuzzy formation control of non-holonomic robots. 4th International Conference on Control, Instrumentation, and Automation (ICCIA), Qazvin, 2016, pp. 178-183. https://doi.org/10.1109/ICCIAutom.2016.7483157

Kosuge, K., Oosumi, T., 1996. Decentralized Control of Multiple Robots Handling an Object. Proc. Of 1996 IEEE Int. Conf. on Intelligent Robots and Systems, pp.318-323.

Kosuge, K., Sato., M., 1999. Transportation of a Single Object by Multiple Decentralized- Controlled Nonholonomic Mobile Robots. Proceedings of the 1999 IEEVRSJ International Conference on Intelligent Robots and Systems.

Krnjak, A., and others. 2015. Decentralized control of free ranging AGVs in warehouse environments. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2015.7139465

Li, P.Y., 1999. Adaptive Passive Velocity Field Control. American Control Conference. June, 1999. https://doi.org/10.1109/ACC.1999.783145

Li, P.Y., Horowitz, R., 2001. Passive Velocity Field Control (PVFC): Part I, Geometry and Robustness. IEEE Trans on Automatic Control. Vol 46, no 9. https://doi.org/10.1109/9.948463

Li, P.Y., Horowitz, R., 2001. Passive Velocity Field Control (PVFC): Part II, Application to contour following. IEEE Trans on Automatic Control. Vol 46, no 9, 2001. https://doi.org/10.1109/9.948464

Liu, Z., Hou, L., Shi, Y., Zheng X., Teng, H., 2018. A co-evolutionary design methodology for complex AGV system. Neural Computing and Applications 29:959-974. Springer. https://doi.org/10.1007/s00521-016-2495-1

Meissner, H., Ilsen, R. and Aurich, J.C. 2017. Analysis of control architectures in the context of Industry 4.0. Proc CIRP 2017; 62:165-9. https://doi.org/10.1016/j.procir.2016.06.113

Mellinger, D., Shomin, M., Michael, N., Kumar, V., 2010. Cooperative grasping and transport using multiple quadrotors. in Proc. Distributed Autonomous Robotic Systems, Lusanne, pp 545-558. https://doi.org/10.1007/978-3-642-32723-0_39

Neumann, M.A., Chin, M.H., Kitts, C.A., 2014. Object Manipulation through Explicit Force Control Using Cooperative Mobile Multi-Robot Systems" Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I WCECS 2014, 22-24 October, 2014, San Francisco, USA

Ohashi, F., Kaminishi, K., Figueroa, J.D., Kato, H., Ogata, T., Hara T., Ota, J., 2016. Realization of heavy object transportation by mobile robots using handcarts and outrigger. Robomech Journal. https://doi.org/10.1186/s40648-016-0066-y

ON5G, 2020. 5G e industria 4.0: retos y oportunidades de la cuarta revolución industrial. Observatorio Nacional 5G. https://on5g.es/wp-content/uploads/2020/01/INFORME-ON5G-NDUSTRIA4.0-DIGITAL.pdf. Accesible el 31/03/2020.

Owen-Hill. A., 2018. Why we're entering the age of robotic logistics. Robotiq. https://blog.robotiq.com/why-were-entering-the-age-of-robotic-logistics

Parker, L. E., 2008. Multiple mobile robot systems. Springer Handbook of Robotics. https://doi.org/10.1007/978-3-540-30301-5_41

Peng, T., Qian, J., Zi, B., Liu, J., Wang, X., 2016. Mechanical Design and Control System of an Omnidirectional Mobile Robot for Material Conveying. International Conference on Digital Enterprise Technology DET-2016. DOI: 10.1016/j.procir.2016.10.068. Springer. https://doi.org/10.1007/s00521-016-2495-1

Pereira, G.A.S., Pimentel, B.S., Chaimowicz, L., Campos, M.F.M., 2002. Coordination of multiple mobile robots in an object carrying task using implicit communication. Proceedings of the 2002 IEEE International Conference on Robotics & Automation" May 2002. https://doi.org/10.1109/ROBOT.2002.1013374

Quinn, M., 2004. The evolutionary design of controllers for minimallyequipped homogeneous multi-robot systems. Ph.D. thesis. Brighton: University of Sussex

Reister, D. B., 1991. A New Wheel Control System for the Omnidirectional HERMIES-III Robot. Proceedings of the IEEE Conference on Robotics and Automation Sacramento, California, April 7-12, pp. 2322-2327.

Ria, 2019. Robotic Industries Association. "Logistic Robots" https://www.robotics.org/service-robots/logistics-robots, available on June 7th, 2019.

Saha, S.K. and Angeles, J. 1989. Kinematics and dynamics of a three-wheeled 2-DOF AGV. ICRA 1989. https://doi.org/10.1109/ROBOT.1989.100202

Santos, C., Espinosa, F., Martinez-Rey, M., Gualda, D. and Losada, C. 2019. Self-Triggered Formation Control of Nonholonomic Robots. Sensors 2019, 19(12), 2689; https://doi.org/10.3390/s19122689

Solaque, L.E., Avendaño, D.R., Molina, M.A., Pulido, C.A. 2015. Sistema de transporte cooperativo desarrollado para un grupo de robots móviles noholonómicos usando el método Líder Virtual. Congreso internacional 264 de ingeniería mecatrónica y automatización - CIIMA 2015

Suh, J.H., Lee, Y.J., Lee, K.S., 2005. Object-transportation control of cooperative AGV systems based on virtual-passivity decentralized control algorithm. Journal of Mechanical Science and Technology. Vol 19 n09, pp. 1720-1735. https://doi.org/10.1007/BF02984184

Tan, W. 2002. Modeling and Control Design of an AGV. Proceedings of the 41st IEEE Conference on Decision and Control. 2002. https://doi.org/10.1109/CDC.2002.1184623

Tuci, E., Alkilabi, M. H., & Akanyeti, O., 2018. Cooperative Object Transport in Multi-robot Systems: A Review of the State-of-the-Art. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2018.00059

Ullrich, G., 2015. Automated Guided Vehicle Systems. A Primer with Practical Applications. Springer. ISBN 978-3-662-44813-7 DOI 10.1007/978-3-662-44814-4

Wada, M. 1996. Holonomic and omnidirectional vehicle with conventional tires. IEEE Int. Conference on Robotics and Automation. May, 1996.

Wada, M., Torii, R., 2013. Cooperative transportation of a single object by omnidirectional robots using potential method. 16th International Conference on Advanced Robotics (ICAR). https://doi.org/10.1109/ICAR.2013.6766543

Wang, Z., Nakano, E., and Matsukawa, T., 1994. Cooperating multiple behavior based robots for object manipulation. in Proc. of the IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, Vol. 3 1524-1531 https://doi.org/10.1007/978-4-431-68275-2_33

Wang, 2016 Z. Wang and M. Schwager. Chapter book: "Multi-robot manipulation without communication". Book: Distributed autonomous robotic systems. Editors: N.Y. Chong and Y.J. ISBN 978-4-431-55877-4 DOI 10.1007/978-4-431-55879-8

Wang, T.M., Tao, Y., Liu, H., 2018. Current researches and future development trend of intelligent robot: a review. International Journal of Automation & Computing. Vol 15, no 5, pp. 525-548. https://doi.org/10.1007/s11633-018-1115-1

Yan, Z., Jouandeau, N., and Cherif, A. A., 2013. A Survey and Analysis of Multi-Robot Coordination. Int. Journal of Advanced Robotic Systems 10 (12), 399. https://doi.org/10.5772/57313

Yang, X., Watanabe, K., Kiguchi, K., Izumi, K., 2003. Coordinated transportation of a single object by two nonholonomic mobile robots. Artif Life Robotics. ISAROB 2003. https://doi.org/10.1007/BF02480885

Yufka, A., Ozkan, M., 2015. Formation-based Control Scheme for Cooperative Transportation by Multiple Mobile Robots. International Journal of Advanced Robotic Systems, 2015. https://doi.org/10.5772/60972

Zhan, M. and Yu, K. 2018. Wireless Communication Technologies in Automated Guided Vehicles: Survey and Analysis. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. https://doi.org/10.1109/IECON.2018.8592782

Descargas

Publicado

23-12-2020

Cómo citar

Espinosa, F., Santos, C. y Sierra-García, J. E. (2020) «Transporte multi-AGV de una carga: estado del arte y propuesta centralizada», Revista Iberoamericana de Automática e Informática industrial, 18(1), pp. 82–91. doi: 10.4995/riai.2020.12846.

Número

Sección

Artículos