Observador de alta ganancia con zona muerta ajustable para estimar la saturación de agua líquida en pilas de combustible tipo PEM
DOI:
https://doi.org/10.4995/riai.2020.12689Palabras clave:
Observadores de Estados, Ruido de Medida, Sistemas no Lineales, Sistemas de energía renovablesResumen
En el campo de las pilas de combustible PEM, la gestión de agua líquida es una de las problemáticas más importantes que afectan a la eficiencia y vida útil del sistema. Las técnicas de control activo y supervisión del agua se ven limitadas por la ausencia de sensores que puedan medir la saturación de agua líquida en línea. Por eso, en este trabajo se presenta el diseño de un observador de estado para la estimación de la saturación de agua líquida en la capa catalizadora del cátodo de una pila de combustible PEM de cátodo abierto. El observador propuesto se basa en técnicas de alta ganancia. Además, se modifica con una función de zona muerta autoajustable con el fin de reducir su sensibilidad al ruido en la medida. Los resultados se han validado mediante simulación numérica y experimentación. Estos muestran que, en ausencia de ruido, el observador propuesto presenta unas prestaciones similares a las de su equivalente sin zona muerta. Además, en presencia de ruido, la zona muerta disminuye significativamente el error de estimación inducido por este.Descargas
Citas
Alaswad, A., Baroutaji, A., Achour, H., Carton, J., Al Makky, A., Olabi, A. G., 2016. Developments in fuel cell technologies in the transport sector. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2016.03.164
Aligia, D. A., Magallán, G. A., Angelo, C. H. D., 2017. Control de tracción para un vehículo eléctrico basado en observadores no lineales. Revista Iberoamericana de Automática e Informática industrial 15 (1), 112-123. https://doi.org/10.4995/riai.2017.8736
Astolfi, D., Marconi, L., Praly, L., Teel, A., 2016. Sensitivity to High-Frequency Measurement Noise of Nonlinear High-Gain Observers. IFACPapersOnLine. https://doi.org/10.1016/j.ifacol.2016.10.274
Astolfi, D., Praly, L., 2013. Output feedback stabilization for SISO nonlinear systems with an observer in the original coordinates. In: Proceedings of the IEEE Conference on Decision and Control. https://doi.org/10.1109/CDC.2013.6760824
Atherton, D., 1992. Kalman Filters. In: Concise Encyclopedia of Modelling & Simulation. https://doi.org/10.1016/B978-0-08-036201-4.50088-6
Barbir, F., 2012. PEM fuel cells: theory and practice. Academic Press.
Bornard, G., Celle-Couenne, F., Gilles, G., 1995. Observability and Observers. In: Nonlinear Systems- T.1, Modeling and Estimation. Chapman & Hall, London, pp. 173-217. https://doi.org/10.1007/978-1-4615-2047-4_6
Byrnes, C. I., Isidori, A., Dec 2004. Nonlinear internal models for output regulation. IEEE Transactions on Automatic Control 49 (12), 2244-2247. https://doi.org/10.1109/TAC.2004.838492
Casteleiro-Roca, J.-L., Barragán, A., Segura, F., Calvo-Rolle, J., Andújar, J., 2019. Sistema híbrido inteligente para la predicción de la tensión de una pila de combustible basada en hidrógeno. Revista Iberoamericana de Automática e Informática industrial 16 (4), 492-501. https://doi.org/10.4995/riai.2019.10986
Cocetti, M., Tarbouriech, S., Zaccarian, L., 2019. High-Gain Dead-Zone Observers for Linear and Nonlinear Plants. IEEE Control Systems Letters. https://doi.org/10.23919/ACC.2018.8431895
Damour, C., Benne, M., Grondin-Perez, B., Chabriat, J.-P., Pollet, B. G., 2015. A novel non-linear model-based control strategy to improve pemfc water management ˆa the flatness-based approach. International Journal of Hydrogen Energy 40 (5), 2371 - 2376. https://doi.org/10.1016/j.ijhydene.2014.12.052
Eikerling, M., 2006. Water management in cathode catalyst layers of PEM fuel cells. Journal of the Electrochemical Society. https://doi.org/10.1149/1.2160435
Esfandiari, F., Khalil, H. K., 1992. Output feedback stabilization of fully linearizable systems. International Journal of Control. https://doi.org/10.1080/00207179208934355
Gauthier, J. P., Hammouri, H., Othman, S., 1992. A Simple Observer for Nonlinear Systems Applications to Bioreactors. IEEE Transactions on Automatic Control. https://doi.org/10.1109/9.256352
Gauthier, J. P., Kupka, I., 2001. Observability concepts. In: Deterministic Observation Theory and Applications. Cambridge University Press, pp. 9-19. https://doi.org/10.1017/CBO9780511546648.003
Hassan Hammouri, 2007. Uniform Observability and Observer Synthesis. In: Nonlinear Observers and Applications. Springer, Berlin, pp. 35-69. https://doi.org/10.1007/978-3-540-73503-8_2
Khalil, H. K., 1995. Existence and Uniqueness. In: Nonlinear Systems. pp. 67-78.
Khalil, H. K., 2017a. High-Gain Observers. In: High-Gain Observers in Nonlinear Feedback Control. Society of Industrial and Applied Mathematics, Philadelphia, pp. 17-30. https://doi.org/10.1137/1.9781611974867.ch2
Khalil, H. K., 2017b. Measurement Noise. In: High-Gain Observers in Nonlinear Feedback Control. Society for Industrial and Applied Mathematics, Philadelphia, pp. 237-276.
Krener, A. J., Respondek, W., 1985. NONLINEAR OBSERVERS WITH LINEARIZABLE ERROR DYNAMICS. SIAM Journal on Control and Optimization. https://doi.org/10.1137/0323016
Kunusch, C., Puleston, P., Mayosky, M., 2012. Control-oriented modelling and experimental validation of a PEMFC generation system. In: Advances in Industrial Control. https://doi.org/10.1007/978-1-4471-2431-3_5
Liu, J., Laghrouche, S., Ahmed, F. S., Wack, M., 2014. PEM fuel cell air-feed system observer design for automotive applications: An adaptive numerical differentiation approach. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2014.08.013
Martinez-Guerra, R., Mata-Machuca, J. L., 2016. Fault detection and diagnosis in nonlinear systems. Springer.
Mench, M., Kumbur, E. C., Veziroglu, T. N., 2011. Polymer Electrolyte Fuel Cell Degradation. https://doi.org/10.1016/C2010-0-67819-9
Mueller, E., Stefanopoulou, A., 05 2006. Analysis, modeling, and validation for the thermal dynamics of a polymer electrolyte membrane fuel cell system. Journal of Fuel Cell Science and Technology - J FUEL CELL SCI TECHNOL 3. https://doi.org/10.1115/1.2173663
Owejan, J. P., Gagliardo, J. J., Sergi, J. M., Trabold, T. A., 2008. Two-phase flow considerations in PEMFC design and operation. In: Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008. https://doi.org/10.1115/ICNMM2008-62037
Pisano, A., Salimbeni, D., Usai, E., Rakhtala, S., Noei, A., 2018. Observer based output feedback control of a PEM fuel cell system by high-order sliding mode technique. https://doi.org/10.23919/ECC.2013.6669600
Sassano, M., Astolfi, A., 2019. A local separation principle via dynamic approximate feedback and observer linearization for a class of nonlinear systems. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2018.2816107
Strahl, S., Costa-Castelló, R., 2016. Model-based analysis for the thermal management of open-cathode proton exchange membrane fuel cell systems concerning e_ciency and stability. Journal of Process Control 47, 201 - 212. https://doi.org/10.1016/j.jprocont.2016.09.004
Strahl, S., Husar, A., Puleston, P., Riera, J., 2014. Performance improvement by temperature control of an open-cathode PEM fuel cell system. In: Fuel Cells. https://doi.org/10.1002/fuce.201300211
Teel, A., Praly, L., 1994. Global stabilizability and observability imply semiglobal stabilizability by output feedback. Systems Control Letters 22 (5), 313 - 325. https://doi.org/10.1016/0167-6911(94)90029-9
Yan, X. G., Edwards, C., 2007. Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica. https://doi.org/10.1016/j.automatica.2007.02.008
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)