Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0

Carlos Eduardo Belman Lopez, José Alfredo Jiménez García, Salvador Hernández González

Resumen

Los sistemas de producción han evolucionado los últimos años gracias a avances tecnológicos recientes e innovaciones en el proceso de manufactura. El termino Industria 4.0 se ha convertido en prioridad y objeto de estudio para empresas, centros de investigación y universidades, sin existir un consenso generalmente aceptado del término. Como resultado es difícil diseñar e implementar soluciones de Industria 4.0 a nivel académico, científico o empresarial. La contribución de este documento se centra en proporcionar un análisis del significado e implicaciones de Industria 4.0 y exponer de forma detallada 17 principios de diseño fundamentales obtenidos a través de un estudio de mapeo sistemático. Estos principios son eficiencia, integración, flexibilidad, descentralización, personalización, virtualización, seguridad, es holística, orientada a servicios, ubicua, colaborativa, modular, robusta, utiliza información en tiempo real, toma decisiones optimizadas por datos, equilibra la vida laboral y es autónoma e inteligente. A través de estos principios, ingenieros e investigadores están capacitados para investigar e implementar escenarios apropiados de Industria 4.0.


Palabras clave

Industria 4.0; sistemas de fabricación flexible e inteligente; cuarta revolución industrial; modelado y control de sistemas de fabricación; automatización

Clasificación por materias

Automatización de sistemas de producción;Sistemas de tiempo real e informática industrial

Texto completo:

PDF

Referencias

Ahmad, A., & Babar, M. (2016). Software architectures for robotic systems: A systematic mapping study. The Journal of Systems and Software, 16-39.

Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 16-21.

Angulo, P., Guzmán, C., Jiménez, G., & Romero, D. (2016). A service-oriented architecture and its ICT infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. International Journal of Computer Integrated Manufacturing, 202-214. doi:http://dx.doi.org/10.1080/0951192X.2016.1145810

Babiceanua, R., & Seker, R. (2016). Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, 128 - 137. doi:http://dx.doi.org/10.1016/j.compind.2016.02.004

Bagheri, B., Yang, S., Kao, H.-A., & Lee, J. (2015). Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC-PapersOnLine, 1622 - 1627. doi:10.1016/j.ifacol.2015.06.318

Beysolow II, T. (2017). Introduction to Deep Learning Using R. San Francisco, California, USA: Apress.

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. International Journal of Information and Communication Engineering, 1-8.

Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis services. International Journal of Computer Integrated Manufacturing, 31(7), 612-623. doi:https://doi.org/10.1080/0951192X.2018.1425552

Charro, A., & Schaefer, D. (2018). Cloud Manufacturing as a new type of Product-Service System. International Journal of Computer Integrated Manufacturing, 1018-1033.

Chen, X.-W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Xplore, 514 - 525.

Clusterplattform Deutschland . (2019). Clusterplattform Deutschland . Obtenido de Clusterplattform Deutschland : https://www.clusterplattform.de/CLUSTER/Navigation/DE/Home/home.html

Crawford, M., & ASME.org. (01 de Julio de 2018). How Industry 4.0 Impacts Engineering Design. Obtenido de ASME: https://www.asme.org/engineering-topics/articles/manufacturing-design/industry-40-impacts-engineering-design

definicionde.org. (27 de Diciembre de 2016). Definición de ubicuo - Que es según la RAE? Obtenido de Definición de las palabras: http://definicionde.org/ubicuo/

Deloitte. (05 de 10 de 2018). ¿Qué es la Industria 4.0? Obtenido de Deloite.: https://www2.deloitte.com/es/es/pages/manufacturing/articles/que-es-la-industria-4.0.html

European Secretariat for Cluster Analysis. (2017). Quality audit: Gold Label of the European Cluster Excellence Initiative (ECEI). Obtenido de ESCA: https://www.cluster-analysis.org/gold-label-new

Evans, P., & Annunziata, M. (26 de Noviembre de 2012). Industrial Internet: Pushing the Boundaries of Minds and Machines. Obtenido de GE: https://www.ge.com/docs/chapters/Industrial_Internet.pdf

Fatorachian, H., & Kazemi, H. (2018). A critical investigation of Industry 4.0 in manufacturing: theoretical operationalisation framework. Production Planning & Control, 633-644. doi:https://doi.org/10.1080/09537287.2018.1424960

Federal Minister of Education and Research. (2013). Deutschlands Spitzencluster Germany’s Leading-Edge Clusters. Obtenido de Federal Ministry of Education and Research (BMBF): https://www.hamburg.de/contentblob/2593364/3113df3e6f569c97b937bd87475564db/data/deutschlands-spitzencluster.pdf

Francalanza, E., Borg, J., & Constantinescu, C. (2018). Approaches for handling wicked manufacturing system design problems. Procedia CIRP, 67, 134-139. doi:https://doi.org/10.1016/j.procir.2017.12.189

Germany Trade & Invest (GTAI). (1 de Julio de 2014). Industrie 4.0 Smart Manufacturing for the future. Obtenido de Germany Trade & Invest (GTAI): https://www.gtai.de/GTAI/Content/CN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf

Götz, M., & Jankowska, B. (2017). Clusters and Industry 4.0 – do they fit together? European Planning Studies, 1633-1653. doi:10.1080/09654313.2017.1327037

Gregor, S. (2002). A Theory of Theories in Information Systems. Information Systems Foundations. Building the Theoretical, 1 - 20.

Gregor, S. (2009). Building Theory in the Sciences of the Artificial. Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology (págs. 1- 10). Philadelphia, Pennsylvania, USA: ACM Digital Library. doi:10.1145/1555619.1555625

Henzel, R., & Herzwurm, G. (2018). Cloud Manufacturing: A state-of-the-art survey of current issues. CIRP, 947–952.

Hermann, M., Otto, B., & Pentek, T. (2015). Design Principles for Industrie 4.0 Scenarios: A Literature Review. ResearchGate, 1-16. doi:10.13140/RG.2.2.29269.22248

Hernández A., A., Figueroa F., V., & Jiménez G., J. (2018). Propuesta de una metodología de diagnóstico para identificar los requerimientos tecnológicos de una empresa tradicional de manufactura para evolucionar a Industria 4.0. Celaya, Guanajuato, México: Tecnológico Nacional de México en Celaya.

Jazdi, N. (17 de Jolio de 2014). Cyber Physical Systems in the Context of Industry 4.0. IEEE International Conference on Automation, Quality and Testing, Robotics. (págs. 1-3). Cluj-Napoca, Romania: IEEE. doi:10.1109/AQTR.2014.6857843

Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. National Academy of Science and Engineering (acatech)., 1-82.

Khan, K., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five steps to conducting a systematic review. Journal of the royal society of medicine, 118-121.

Klingenberg, C. (2017). Industry 4.0: what makes it a revolution? EurOMA (págs. 1-11). ResearchGate.

Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 508-517. doi:https://doi.org/10.1080/00207543.2017.1351644

Lee, J., Ardakani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP, 3-7.

Lee, J., Bagheri, B., & Kao, H.-A. (2014). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Society of Manufacturing Engineers (SME), 18- 23. doi:http://dx.doi.org/10.1016/j.mfglet.2014.12.001

Lee, J., Kao, H.-A., & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP, 16, 3-8. doi:https://doi.org/10.1016/j.procir.2014.02.001

Macchi, D., & Solari, M. (2012). Mapeo sistemático de la literatura sobre la Adopción de Inspecciones de Software. Universidad ORT de Uruguay, 1 - 8.

MIT Technology Review. (31 de Octubre de 2018). "Digital twin", un gemelo virtual para aconsejar a la Industria 4.0. Obtenido de MIT Technology Review: https://www.technologyreview.es/s/10696/digital-twin-un-gemelo-virtual-para-aconsejar-la-industria-40

Netzwerk Smart Production. (01 de Enero de 2019). Smart Production. Obtenido de Netzwerk Smart Production: https://www.smartproduction.de/

Neugebauer, R., Hippmann, S., Leis, M., & Landherr, M. (2016). Industrie 4.0 - From the Perspective of Applied Research. Procedia CIRP, 57, 2-7. doi:https://doi.org/10.1016/j.procir.2016.11.002

Nunes, M., Pereira, A., & Alves, A. (2017). Smart products development approches for Industry 4.0. Manufacturing Engineering Society International Conference (págs. 1215-1222). Vigo, España: Procedia Manufacturing.

Pereira, A., & Romero, F. (2017). A review of the meaning and the implications of the Industry 4.0 concept. En P. Manufacturing (Ed.), Manufacturing Engineering Society International Conference (págs. 1206-1214). Vigo, España: Elsevier.

Piedrahita, A., & Vélez Ángel, P. (2017). Control de calidad en sistemas crowdsourcing: un mapeo sistemático. Scientia et Technica, 1 - 10. doi:http://dx.doi.org/10.22517/23447214.13541

Porter, M. (2000). Location, Competition, and Economic Development: Local Clusters in a Global Economy. Economic Development Quarterly, 15-34. doi:10.1177/089124240001400105

PWC. (01 de 01 de 2016). Industry 4.0: Building the Digital Enterprise. Obtenido de PWC: https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf

Qin, J., Liu, Y., & Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 173-178.

Quintana, G., & Solari, M. (2012). Estudio de Mapeo Sistemático sobre Experimentos de Generación Automática de Casos de Prueba Estructurales. Universidad ORT de Uruguay, 1-10.

Roblek, V., Meško, M., & Krapež, A. (2016). A Complex View of Industry 4.0. SAGE, 1-11. doi:10.1177/2158244016653987

Russo, J., & Solari, M. (2017). Estudio de Mapeo Sistemático sobre Arquitecturas de Software para Big Data. Conferencia Iberoamericana en Software Engineering (págs. 1 - 14). Buenos Aires, Argentina: ResearchGate.

Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., & Jozinović, P. (2015). Industry 4.0 - Potentials for Creating Smart Products: Empirical Research Results. Business Information Systems, 16–27. doi:10.1007/978-3-319-19027-3_2

Schuh, G., Potente, T., Wesch-Potente, C., Weber, A., & Prote, J.-P. (2014). Collaboration Mechanisms to increase Productivity in the Context of Industrie 4.0. Procedia CIRP, 51 - 56.

Siemens. (05 de 10 de 2018). Siemens España | El Futuro de la Industria 4.0. Obtenido de Siemens: https://w5.siemens.com/spain/web/es/el-futuro-de-la-industria/pages/el_futuro_de_la_industria.aspx

Thilmany, J., & ASME.org. (17 de Mayo de 2018). Artificial Intelligence Transforms Manufacturing. Obtenido de ASME: https://www.asme.org/engineering-topics/articles/manufacturing-design/artificial-intelligence-transforms-manufacturing

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 – A Glimpse. Procedia Manufacturing, 20, 233-238. doi:https://doi.org/10.1016/j.promfg.2018.02.034

Wang, X., Givehchi, M., & Wang, L. (2017). Manufacturing system on the cloud: a case study on cloud-based process planning. Procedia CIRP, 39-45.

Wang, X., Ong, S., & Nee, A. (2017). A comprehensive survey of ubiquitous manufacturing research. International Journal of Production Research, 604-628. doi:https://doi.org/10.1080/00207543.2017.1413259

Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0 - Standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine, 48(3), 579-584. doi:https://doi.org/10.1016/j.ifacol.2015.06.143

Wiesner, S., & Thoben, K.-D. (2016). Requirements for models, methods and tools supporting servitisation of products in manufacturing service ecosystems. International Journal of Computer Integrated Manufacturing, 1-12. doi:http://dx.doi.org/10.1080/0951192X.2015.1130243

WordReference.com. (2005). ubicuo - definición - WordReference.com. Obtenido de WordReference.com: https://www.wordreference.com/definicion/ubicuo

Xu, L. D., & Duan, L. (2018). Big data for cyber physical systems in industry 4.0: a survey. Enterprise Information Systems, 1-23. doi:10.1080/17517575.2018.1442934

Xu, L., Xu, E., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56, 2941–2962. doi:https://doi.org/10.1080/00207543.2018.1444806

Zhong, R., Xu, X., Klotz, E., & Newman, S. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 616–630. doi:http://dx.doi.org/10.1016/J.ENG.2017.05.015

Zhonga, R., Wang, L., & Xu, X. (2017). An IoT-enabled Real-time Machine Status Monitoring Approach for Cloud Manufacturing. Procedia CIRP, 709 – 714.

Zhou, K., Liu, T., & Zhou, L. (2016). Industry 4.0: Towards Future Industrial Opportunities and Challenges. International Conference on Fuzzy Systems and Knowledge Discovery (págs. 2147–2152). Zhangjiajie, China: IEEE.

Abstract Views

2556
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912