Control de posición y fuerza con estimación de masa para sistemas cooperativos
DOI:
https://doi.org/10.4995/riai.2020.12432Palabras clave:
Robots cooperativos, control adaptable, control de fuerza, restricciones holonómicas, función tangente hiperbólicaResumen
La manipulación cooperativa de un objeto por dos o más brazos robóticos requiere controlar tanto el movimiento del objeto como las fuerzas ejercidas por los manipuladores. En términos de cinemática y estática, el enfoque elegido se basa en la denominada formulación simétrica. Se diseña un algoritmo de control que utiliza una modificación del método híbrido de torque computarizado basado en el Principio de Ortogonalización. Además, la masa del objeto se estima calculando la fuerza aplicada por cada efector final para sostener el objeto. El método propuesto es una extensión natural del esquema de control adaptativo previamente reportado para manipuladores geométricamente restringidos. La prueba de estabilidad se desarrolla utilizando la teoría de Lyapunov. Se presentan resultados experimentales.
Descargas
Citas
Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Principle of Orthogonalization for Hybrid Control of Robot Arms. Proceedings of the IFAC 12th Triennial World Congress. Volume 26, Issue 2, Part 3, 335–340. Sidney, Australia. https://doi.org/10.1016/S1474-6670(17)48744-1
Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Model–Based Adaptive Hybrid Control for Geometrically Constrained Robots. Proceedings IEEE International Conference on Robotics and Automation. 618–623. Atlanta, GA, USA. https://doi.org/10.1109/ROBOT.1993.292047
Dauchez, P. and Zapata, R., 1985. Co–ordinated control of two cooperative manipulators: the use of a kinematic model. Proceedings 15th Int. Symp. Industrial Robots. 641–648. Tokyo, Japan.
Fujii, S. and Kurono, S., 1975. Coordinated computer control of a pair of manipulators. Proceedings 4th IFToMM World Congress, University of Newcastle upon Tyne. 411–417. England.
Gudiño–Lau, J. and Arteaga–Pérez, M. A., 2003. Force Control with a Velocity Observer. Proc. European Control Conference (ECC 2003). 52–55. Cambridge, UK. https://doi.org/10.23919/ECC.2003.7086506
Gudiño–Lau, J. and Arteaga–Pérez, M. A. and Muñoz, L. A. and Parra–Vega, V., 2004. On the control of cooperative robots without velocity measurements. IEEE Transactions on Control Systems Technology, 12 (4) 600–608. https://doi.org/10.23919/ECC.2003.10.1109/TCST.2004.824965
Hayati, S., 1986. Hybrid position/force control of multi-arm cooperating robots. Proceedings of 1986 IEEE International Conference on Robotics and Automation. 82–89. San Francisco, CA, USA. https://doi.org/10.1109/ROBOT.1986.1087650
Hwang, G. and Hashimoto, H. and Szemes, P. and Ando, N., 2005. An evaluation of grasp force control in single-master multi-slave tele-micromanipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2179–2184. Alberta, Canada. https://doi.org/10.1109/IROS.2005.1545074
Kelly, R. and Santibáñez, V., 2003. Control de Movimiento de Robots Manipuladores, Pearson Prentice–Hall, Madrid, España. ISBN–10: 8420538310 / ISBN–13: 9788420538310
Khalil, H. K., 1996. Nonlinear Systems (2nd Ed), Prentice–Hall, Englewood Cliffs, New Jersey ISBN–10: 9332542031 / ISBN–13: 978-9332542037
Khatib, O., 1987. A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE Journal of Robotics and Automation, Vol. 3(1), 43–53. https://doi.org/10.1109/JRA.1987.1087068
Koivo, A. J. and Bekey, G. A., 1987. Report of the Workshop on Coordinated Multiple Robot Manipulators: Planning, Control and Applications. IEEE Transactions on Robotics and Automation (IEEE Trans Robot Autom), 4(1) 91–93. ISSN: 1042-296X
McClamroch, N. H., 1986. Singular systems of differential equations as dynamic models for constrained robot systems. Proceedings of 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA 21–28. https://doi.org/10.1109/ROBOT.1986.1087712
McClamroch, H. and Wang, D., 1990. Linear feedback control of position and contact force for a nonlinear constrained mechanism. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 112(4), 640–645. https://doi.org/10.1115/1.2896189
Murphey, T. D. and Horowitz, M., 2008. Adaptive cooperative manipulation with intermit- tent contact. Proc. IEEE International Conference on Robotics and Automation, Pasadena, California. USA 1483–1488. https://doi.org/10.1109/ROBOT.2008.4543411
Nakano, E. and Ozaki, S. and Ishida, T. and Kato, I., 1974. Cooperational control of the anthropomorphous manipulator MELARM. Proceedings 4th Int. Symp. Industrial Ro- bots, 251–260. Tokyo, Japan.
Naniwa, T. and Arimoto, S. and Parra–Vega, V., 1994. A model–based adaptive control scheme for coordinated control of multiple manipulators. Proceedings of the IEEE/RS- J/GI International Conference on Intelligent Robots and Systems, Munich, Germany 695–702. https://doi.org/10.1109/IROS.1994.407357
Pliego–Jiménez, J. and Arteaga–Pérez, M., 2017. On the adaptive control of cooperative robots with time–variant holonomic constraints. International Journal of Adaptive Control and Signal Processing, 31(8) 1217–1231. https://doi.org/10.1002/acs.2758
Rahman, S. M. M. and Ikeura, R., 2012. Weight–perception–based novel control for cooperative lifting of objects with a power assist robot by two humans. International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy 228–233. https://doi.org/10.1109/BioRob.2012.6290259
Raibert, M. and Craig, J., 1981. Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 103(2), 126–133. https://doi.org/10.1115/1.3139652
Rivera–Dueñas, J. C. and Arteaga–Pérez, M. A., 2013. Robot force control without dynamic model: Theory and experiments. Robotica, Vol. 31(1) 149–171. https://doi.org/10.1017/S026357471200015X
Rugthum, T. and Tao, G., 2014. An adaptive actuator failure compensation scheme for a cooperative manipulator system. Proc. American Control Conference, Portland, Oregon. USA 1951–1956. https://doi.org/10.1109/CDC.2015.7403208
Sánchez–Sánchez, P. and Arteaga–Pérez, M. A., 2017. Improving force tracking control performance in cooperative robots. International Journal of Advanced Robotic Systems, 14(4) 1–15. https://doi.org/10.1177/1729881417708969
Slotine, J. J. E. and Li, W., 1991. Applied Nonlinear Control. Prentice–Hall, Englewood Cliffs, New Jersey. ISBN–10: 0130408905 / ISBN–13: 978-0130408907
Spong, M. W. and Hutchinson, S. and Vidyasagar, M., 2006. Robot Modeling and Control. John Wiley and Sons, USA. ISBN–10: 0471649902 / ISBN–13: 978-0471649908
Tarn, T. J. and Bejczy, A. K. and Yun, X., 1988. New nonlinear control algorithms for multiple robot arms. IEEE Transactions on Aerospace and Electronic Systems, 24(5) 571–583. https://doi.org/10.1109/7.9685
Uchiyama, M. and Iwasawa, N. and Hakomori, K., 1987. Hybrid position/force control for coordination of a two-arm robot. Proceedings of 1987 IEEE International Conference on Robotics and Automation, 1242–1247, Raleigh, NC, USA. https://doi.org/10.1109/ROBOT.1987.1087766
Uchiyama, M. and Dauchez, P., 1988. A symmetric hybrid position/force control scheme for the coordination of two robots. Proceedings of 1988 IEEE International Conference on Robotics and Automation, 350–356, Philadelphia, PA, USA. https://doi.org/10.1109/ROBOT.1988.12073
Uchiyama, M. and Dauchez, P., 1993. Symmetric kinematic formulation and non– master/slave coordinated control of two–arm robots. Journal Advanced Robotics. 7(4) 361–383. https://doi.org/10.1163/156855393X00221
Yun-Hui, L. and Parra-Vega, V. and Arimoto, S., 1996. Decentralized Cooperation Control: Joint–Space Approaches for Holonomic Cooperations. Proc. IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota 2420–2425. https://doi.org/10.1109/ROBOT.1996.506526
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)