Control de posición/fuerza con estimación de masa para sistemas cooperativos

Pablo Sanchez-sanchez, Marco Antonio Arteaga-perez

Resumen

La manipulación cooperativa de un objeto por dos o más brazos robóticos requiere controlar tanto el movimiento del objeto como las fuerzas ejercidas por los manipuladores. En términos de cinemática y estática, el enfoque elegido se basa en la denominada formulación simétrica. Se diseña un algoritmo de control que utiliza una modificación del método híbrido de torque computarizado basado en el Principio de Ortogonalización. Además, la masa del objeto se estima calculando la fuerza aplicada por cada efector final para sostener el objeto. El método propuesto es una extensión natural del esquema de control adaptativo previamente reportado para manipuladores geométricamente restringidos. La prueba de estabilidad se desarrolla utilizando la teoría de Lyapunov. Se presentan resultados experimentales.


Palabras clave

Control de robots y sistemas multi-robot; Modelado de robots y sistemas multi-robot; Control de fuerzas

Clasificación por materias

Robótica y sistemas robotizados

Texto completo:

PDF

Referencias

Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Principle of Orthogonalization for Hybrid Control of Robot Arms. Proceedings of the 12th IFACWorld Congress 507–512

Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Model-Based Adaptive Hybrid Control for Geometrically Constrained Robots. Proc. IEEE International Conference on Robotics and Automation 618–623

Bonitz, R. G. and Hsia, T. C., 1994. Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA 1521–1527 DOI: 10.1109/ROBOT.1994.351372

Dauchez, P. and Zapata, R., 1985. Coordinated control of two cooperative manipulators: the use of a kinematic model. Proceedings 15th Int. Symp. Industrial Robots, Tokyo, Japan 641–648.

Fujii, S. and Kurono, S., 1975. Coordinated computer control of a pair of manipulators. Proceedings 4th IFToMM World Congress, the University of Newcastle upon Tyne 411–417. England. DOI: 10.1299/jsmemag.78.682 804

Gudiño–Lau, J., and Arteaga–Pérez, M. A., 2003. Force Control with a Velocity Observer. Proc. European Control Conference, Cambridge, UK

Gudiño–Lau, J., and Arteaga–Pérez, M. A. and Muñoz, L. A. and Parra–Vega, V., 2004. On the control of cooperative robots without velocity measurements. IEEE Transactions on Control Systems Technology, 12 (4) 600–608

Hayati, S., 1986. Hybrid position/force control of multi-arm cooperating robots. Proceedings of 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA 82–89. DOI: 10.1109/ROBOT.1986.1087650

Hwang, G. and Hashimoto, H. and Szemes, P. and Ando, N., 2005. An

evaluation of grasp force control in single–master multi–slave tele–

micromanipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada 2179–2184

Kelly, R. and Santibáñez, V., 2003. Control de Movimiento de Robots Manipuladores, Pearson Prentice–Hall, Madrid, España

Khalil, H. K., 1996. Nonlinear Systems (2nd Ed), Prentice-Hall, Englewood Cliffs, New Jersey

Khatib, O., 1987. A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE Journal of Robotics and Automation, Vol. 3 43–53

Koivo, A. J. and Bekey, G. A., 1987. Report of the Workshop on Coordinated Multiple Robot Manipulators: Planning, Control and Applications. IEEE Trans. of Robotic and Automation, 4(1) 91–93.

McClamroch, N. H., 1986. Singular systems of differential equations as dynamic models for constrained robot systems. Proceedings of 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA 21–28. DOI: 10.1109/ROBOT.1986.1087712

McClamroch, H. and Wang, D., 1990. Linear feedback control of position and contact force for a nonlinear constrained mechanism. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 112 640–645

Murphey, T. D. and Horowitz, M., 2008. Adaptive cooperative manipulation with intermittent contact. Proc. IEEE International Conference on Robotics and Automation, Pasadena, California. USA 1483–1488

Nakano, E. and Ozaki, S. and Ishida, T. and Kato, I., 1974. Cooperational control of the anthropomorphous manipulator MELARM. Proceedings 4th Int. Symp. Industrial Robots, 251–260. Tokyo, Japan

Naniwa, T. and Arimoto, S. and Parra-Vega, V., 1994. A model-based adaptive control scheme for coordinated control of multiple manipulators. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Munich, Germany 695–702

Pliego–Jiménez, J. and Arteaga–Pérez, M., 2017. On the adaptive control of cooperative robots with time-variant holonomic constraints. International Journal of Adaptive Control and Signal Processing, 31(8) 1217–1231

Rahman, S. M. M. and Ikeura, R., 2012. Weight–perception-based novel control for cooperative lifting of objects with a power assist robot by two humans. International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy 228–233

Raibert, M. and Craig, J., 1981. Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 103. 126–133

Rivera–Dueñas, J. C. and Arteaga–Pérez, M. A., 2013. Robot force control without dynamic model: Theory and experiments. Robotica, Vol. 31 149–171

Rugthum, T. and Tao, G., 2014. An adaptive actuator failure compensation scheme for a cooperative manipulator system. Proc. American Control Conference, Portland, Oregon. USA 1951–1956

Sánchez–Sánchez, P. and Arteaga–Pérez, M. A., 2014. Improving force tracking control performance in cooperative robots. International Journal of Advanced Robotic Systems, 14(4) 1–15

Slotine, J. J. E. and Li, W., 1991. Applied Nonlinear Control. Prentice–Hall,

Englewood Cliffs, New Jersey

Spong, M. W. and Hutchinson, S. and Vidyasagar, M., 2006. Robot Modeling and Control. John Wiley & Sons, USA.

Tarn, T. J. and Bejczy, A. K. and Yun, X., 1988. New nonlinear control algorithms for multiple robot arms. IEEE Transactions on Aerospace and Electronic Systems, 24(5) 571–583. DOI: 10.1109/7.9685

Uchiyama, M. and Iwasawa, N. and Hakomori, K., 1987. Hybrid position/force control for coordination of a two-arm robot. Proceedings of 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA 1242–1247. DOI: 10.1109/ROBOT.1987.1087766

Uchiyama, M. and Dauchez, P., 1988. A symmetric hybrid position/force control scheme for the coordination of two robots. Proceedings of 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA- 350–356. DOI: 10.1109/ROBOT.1988.12073

Uchiyama, M. and Dauchez, P., 1993. Symmetric kinematic formulation and non–master/slave coordinated control of two–arm robots. Adv. Robot. 7(4) 361–383

Yun-Hui, L. and Parra-Vega, V. and Arimoto, S., 1996. Decentralized Cooperation Control: Joint-Space Approaches for Holonomic Cooperations. Proc. IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota 2420–2425

Abstract Views

316
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912