Sintonización del controlador en cascada PI-STA para aplicaciones de filtros activos de potencia

Autores/as

  • R. Terán Instituto Tecnológico de Sonora
  • J. Pérez Instituto Tecnológico de Sonora https://orcid.org/0000-0003-0028-1829
  • J. Beristáin Instituto Tecnológico de Sonora
  • V. Cárdenas Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.4995/riai.2020.12403

Palabras clave:

Filtros activos, inversores, electrónica de potencia, control en cascada, control en modos deslizantes, calidad de la energía

Resumen

Típicamente el esquema de control de un filtro activo de potencia corresponde a un controlador en cascada, el cual consta de un lazo externo para la regulación del voltaje de cd y un lazo interno para el seguimiento de una corriente de referencia. Cada uno de estos lazos de control está asociado a un controlador que permite converger rápidamente a su respectiva referencia. Este trabajo emplea un controlador PI en el lazo externo y el algoritmo Super-Twisting (STA) en el lazo interno, los cuales conforman al controlador en cascada denotado como PI-STA. Este artículo presenta una metodología para sintonizar los controladores PI y STA, donde el primero se sintoniza a partir de la respuesta al escalón, mientras el STA se sintoniza a partir de considerar la similitud de su estructura con respecto a la de un PI, facilitando así la obtención de las ganancias del STA. Para validar la metodología de sintonización, se presentan resultados en simulación y experimentales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

R. Terán, Instituto Tecnológico de Sonora

Departamento de Ingeniería Eléctrica y Electrónica

J. Pérez, Instituto Tecnológico de Sonora

Departamento de Ingeniería Eléctrica y Electrónica

Profesor-investigrador de tiempo completo.

J. Beristáin, Instituto Tecnológico de Sonora

Departamento de Ingeniería Eléctrica y Electrónica

V. Cárdenas, Universidad Autónoma de San Luis Potosí

Facultad de Ingeniería

Citas

Ammar, Abdelkarim, et al. "Closed Loop Torque SVM-DTC Based on Robust Super Twisting Speed Controller for Induction Motor Drive with Efficiency Optimization." International Journal of Hydrogen Energy, vol. 42, no. 28, Pergamon, July 2017, pp. 17940-52. https://doi.org/10.1016/j.ijhydene.2017.04.034

Asadi, M., Ebrahimirad, H., Mousavi, M. S., & Jalilian, A. (2016). Sliding mode control of dc-link capacitors voltages of a NPC 4-wire shunt active power filter with selective harmonic extraction method. In 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016 (pp. 273-278). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/PEDSTC.2016.7556873

Boubzizi, Said, et al. "Cascaded Adaptive Super Twisting Controller for DC/DC Converters in Electrical Vehicle Applications." IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2018, pp. 2007-14. https://doi.org/10.1109/IECON.2018.8591380

Costa, Bruno Leandro Galvao, et al. "Tuning of a PI-MR Controller Based on Differential Evolution Metaheuristic Applied to the Current Control Loop of a Shunt-APF." IEEE Transactions on Industrial Electronics, vol. 64, no. 6, June 2017, pp. 4751-61. https://doi.org/10.1109/TIE.2017.2674609

Del Pizzo, Andrea, et al. "Super Twisting Sliding Mode Control of Smart-Inverters Grid-Connected for PV Applications." 2017 6th International Conference on Renewable Energy Research and Applications, ICRERA 2017, vol. 2017-Janua, IEEE, 2017, pp. 793-96. https://doi.org/10.1109/ICRERA.2017.8191168

Enrique, Luis, et al. "Integral Nested Sliding Mode Control for Robotic Manipulators." IFAC Proceedings Volumes, vol. 41, no. 2, Elsevier, Jan. 2008, pp. 9899-904. https://doi.org/10.3182/20080706-5-KR-1001.01675

Galan, Nestor Daniel, et al. "Application of PI and Super Twisting Drivers to Voltage Regulation of Wind Farm via StatCom." IEEE Latin America Transactions, vol. 13, no. 2, Feb. 2015, pp. 462-68. https://doi.org/10.1109/TLA.2015.7055565

Gonzalez, O., et al. "Unity Power Factor Rectifier with Reactive and Harmonic Current Compensation." 2016 13th International Conference on Power Electronics (CIEP), IEEE, 2016, pp. 238-42. https://doi.org/10.1109/CIEP.2016.7530763

Jayathilaka, Imanka, et al. "DQ Transform Based Current Controller for Single-Phase Grid Connected Inverter." 2018 2nd International Conference On Electrical Engineering (EECon), IEEE, 2018, pp. 32-37. https://doi.org/10.1109/EECon.2018.8541004

Khalil, H. (2015). Nonlinear Control.

Komurcugil, Hasan. "Improved Passivity-Based Control Method and Its Robustness Analysis for Single-Phase Uninterruptible Power Supply Inverters." IET Power Electronics, vol. 8, no. 8, 2015, pp. 1558-70. https://doi.org/10.1049/iet-pel.2014.0706

Liserre, Marco, et al. "Multiple Harmonics Control for Three-Phase Grid Converter Systems with the Use of PI-RES Current Controller in a Rotating Frame." IEEE Transactions on Power Electronics, vol. 21, no. 3, 2006, pp. 836-41. https://doi.org/10.1109/TPEL.2006.875566

Mane, M., & Namboothiripad, M. K. (2016). Current harmonics reduction using sliding mode control based shunt active power filter. In Proceedings of the 10th International Conference on Intelligent Systems and Control, ISCO 2016. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ISCO.2016.7727005

Mane, M., & Namboothiripad, M. K. (2017). PWM based sliding mode controller for shunt active power filter. In 2017 International Conference on Nascent Technologies in Engineering (ICNTE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICNTE.2017.7947964

Mina, J. (2002). Stability Analysis for a Single Phase Active Shunt Power Filter. Retrieved December 15, 2019, from https://www.researchgate.net/publication/331962956_Stability_Analysis_for_a_Single_Phase_Active_Shunt_Power_Filter

Ochoa Robles, Obed Enrique, et al. "Reactive Power Compensation in a Photovoltaic Grid Tie System, Using a Single-Phase Bidirectional High Frequency Link Converter." IEEE Latin America Transactions, vol. 14, no. 4, Apr. 2016, pp. 1816-21. https://doi.org/10.1109/TLA.2016.7483520

Pérez Ramírez, Javier. Electrónica de Potencia: Modelado y Control de Convertidores Cd-Cd. 2016.

Ramírez, Jorge, et al. "High Order Sliding Mode Control for Shunt Active Power Filter." 2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015, IEEE, 2016, pp. 1-6. https://doi.org/10.1109/ROPEC.2015.7395111

Sadeghi, R., Madani, S. M., Ataei, M., Agha Kashkooli, M. R., & Ademi, S. (2018). Super-twisting sliding mode direct power control of a brushless doubly fed induction generator. IEEE Transactions on Industrial Electronics, 65(11), 9147-9156. https://doi.org/10.1109/TIE.2018.2818672

Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding Mode Control and Observation. https://doi.org/10.1016/j.chaos.2007.09.095

Shu, Zeliang, et al. "Specific Order Harmonics Compensation Algorithm and Digital Implementation for Multi-Level Active Power Filter." IET Power Electronics, vol. 10, no. 5, Apr. 2017, pp. 525-35. https://doi.org/10.1049/iet-pel.2016.0315

Society, IEEE Power &. Energy. 1459-2010 IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. 2010, https://ieeexplore.ieee.org/document/5439063.

Teran, R. A. J., et al. "TUNING METHODOLOGY FOR PI CONTROLLERS IN ACTIVE POWER FILTERS." DYNA Energía y Sostenibilidad, vol. 8, no. 1, 2019, pp. 1-11. https://doi.org/10.6036/ES9229

Descargas

Publicado

07-04-2020

Cómo citar

Terán, R., Pérez, J., Beristáin, J. y Cárdenas, V. (2020) «Sintonización del controlador en cascada PI-STA para aplicaciones de filtros activos de potencia», Revista Iberoamericana de Automática e Informática industrial, 17(2), pp. 130–143. doi: 10.4995/riai.2020.12403.

Número

Sección

Artículos