Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno

J. M. García, A. Valero, A. Bohórquez

Resumen

En este artículo se estudia el efecto que produce el sistema de suspensión sobre la estabilidad al vuelco y la capacidad de direccionamiento en un robot móvil Skid Steer, cuando este se enfrenta a distintas discontinuidades del terreno: descenso (frontal y lateral) y ascenso sobre escalones, además del desplazamiento sobre zanjas. Específicamente, se estudió el instante cuando se generan cargas de impacto producto del movimiento del robot sobre la irregularidad del terreno. En cada caso se hizo un análisis correlacional del efecto sobre la estabilidad al vuelco y el direccionamiento (cuantificadas con métricas fundamentadas en las fuerzas de reacción de las ruedas con el suelo), al variar cuatro parámetros que definen el sistema de suspensión: constante de rigidez en los resortes, constante de amortiguamiento en los amortiguadores y las constantes de rigidez y amortiguamiento en las ruedas. Por último se estimó para cada caso, qué magnitudes deberían adquirir estos parámetros para garantizar una mejor estabilidad y direccionamiento del robot.

Palabras clave

Suspensión Pasiva; Robot Skid Steer; Estabilidad al Vuelco; Direccionamiento de vehículo; Simulación por Computador

Clasificación por materias

Robótica y sistemas robotizados

Texto completo:

PDF

Referencias

Abo-Shanab, R., & Sepehri, N., 2005. Tip-over stability of manipulator-like mobile hydraulic machines. Journal of Dynamic Systems, Measurement and Control , 127 (2), 295-301. https://doi.org/10.1115/1.1898239

Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., y otros., 2010. An active suspension system for lunar crew mobility. IEEE Aerospace Conference, (págs. 1-9). Big Sky. https://doi.org/10.1109/AERO.2010.5446895

Bruzzone, L., Fanghella, P., & Quaglia, G., 2017. Experimental performance assessment of mantis 2, hybrid leg-wheel mobile robot. International Journal of Automation Technology , 11 (3), 396-403. https://doi.org/10.20965/ijat.2017.p0396

Chen, S., Li, X., Zhou, J., Wu, W., Yuan, S., & Liu, S., 2017. Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension. Proceedings of IEEE International Conference on Mechatronics and Automation, (págs. 370-375). Takamatsu. https://doi.org/10.1109/ICMA.2017.8015845

Chokor, A., Talj, R., Charara, A., Shraim, H., & Francis, C., 2016. Active suspension control to improve passengers comfort and vehicle's stability. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), (págs. 296-301). Rio de Janeiro. https://doi.org/10.1109/ITSC.2016.7795570

Cordes, F., Kirchner, F., & Babu, A., 2018. Design and field testing of a rover with an actively articulated suspension system in a Mars analog terrain. Journal of Field Robotics , 35 (7), 1149-1181. https://doi.org/10.1002/rob.21808

Cordos, N., & Todorut, A., 2019. Influences of the suspensions characteristics on the vehicle stability. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) (págs. 808-813). Cham: Springer. https://doi.org/10.1007/978-3-319-94409-8_94

Deremetz, M., Lenain, R., & Thuilot, B., 2017. tiffness and damping real-time control algorithms for adjustable suspensions : A strategy to reduce dynamical effects on vehicles in off-road conditions. IFAC-PapersOnLine , 50 (1), 1958-1964. https://doi.org/10.1016/j.ifacol.2017.08.1565

Ellery, A., 2016. Rover mobility and locomotion. En Planetary Rovers, Springer Praxis Books (págs. 71-132). Berlin: Springer, Heidelberg. https://doi.org/10.1007/978-3-642-03259-2_4

Funde, J., Wani, K., Dhote, N., & Patil, S., 2019. Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection. En U. Chandrasekhar, L. Yang, & S. Gowthaman (Ed.). (págs. 1-15). Singapure: Springer. https://doi.org/10.1007/978-981-13-2697-4_1

García, J. M., Gil, A., & Sánchez, E. (2018). Desarrollo de una arquitectura de software para el robot móvil Lázaro. Ingeniare , 26 (3), 376-390. https://doi.org/10.4067/S0718-33052018000300376

García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2017b. Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. https://doi.org/10.1016/j.robot.2016.12.007

García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2015b. Steerability analysis on slopes of a mobile robot with a ground contact arm. Proc. 23rd Mediterranean Conference on Control and Automation, (págs. 267-272). Torremolinos, Spain. https://doi.org/10.1109/MED.2015.7158761

García, J. M., Medina, I., Cerezo, A. G., & Linares, A., 2015a. Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions , 13 (10), 3228-3234. https://doi.org/10.1109/TLA.2015.7387226

García, J., Medina, I., Martínez, J., García-Cerezo, A., Linares, A., & Porras, C., 2017a. Lázaro: robot móvil dotado de brazo para contacto con el suelo. Revista Iberoamericana de Automática e Informática industrial , 14 (1), 174-183. https://doi.org/10.1016/j.riai.2016.09.012

Goga, V., & Kl'úcik, M., 2012. Optimization of vehicle suspension parameters with use of evolutionary computation. Procedia Engineering , 48, 174-179. https://doi.org/10.1016/j.proeng.2012.09.502

Hurel, J., Mandow, A., & García-Cerezo, A., 2013. Los sistemas de suspensión activa y semiactiva: una revisión. Revista iberoamericana de automática e informática , 10 (2), 121-132. https://doi.org/10.1016/j.riai.2013.03.002

Kang, S., Lee, W., Kim, M., & Shin, K., 2005. Robhaz-rescue: Rough-terrain negotiable teleoperated mobile robot for rescue mission. IEEE International Workshop on Safety, Security and Rescue Robotics, (págs. 105-110). Kobe.

Lei, X., Zhang, G., Li, S., Qian, H., & Xu, Y., 2017. Dual-spring AGV shock absorption system design: Dynamic analysis and simulations. IEEE International Conference on Robotics and Biomimetics (ROBIO), (págs. 1-7). Macau. https://doi.org/10.1109/ROBIO.2017.8324559

Li, B., Ma, S., Liu, J., Wang, M., Liu, T., & Wang, Y., 2009. Amoeba-I: a shape-shifting modular robot for urban search and rescue. Advanced Robotics , 23 (9), 1057-1083. https://doi.org/10.1163/156855309X452485

Liu, Y., Meng, X., & Zhang, M., 2008. Research on mobile manipulator tip-over stability and compensation. 8th WSEAS International Conference on Robotics, control and Manufacturing Technology, (págs. 114-120). Hangzhou.

Luo, Z., Shang, J., Wei, G., & Ren, L., 2018. Module-based structure design of wheeled mobile robot. Mechanical Sciences , 9 (1), 103-121. https://doi.org/10.5194/ms-9-103-2018

Mihon, L., & Lontiș, N., 2019. Modeling and analysis of a vehicle suspension. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018), (págs. 113-121). https://doi.org/10.1007/978-3-319-94409-8_14

Moosavian, A., Alipour, K., & Bahramzadeh, Y., 2007. Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. IEEE/RSJ International Conference on Intelligent Robots and Systems, (págs. 1210-1215). San Diego. https://doi.org/10.1109/IROS.2007.4398999

Reid, W., Pérez-Grau, F., Göktogan, A., & Sukkarieh, S., 2016. Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface. IEEE International Conference on Robotics and Automation (ICRA), (págs. 5596-5602). Stockholm. https://doi.org/10.1109/ICRA.2016.7487777

Sert, E., & Boyraz, P., 2017. Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering Science and Technology, an International Journal , 20, 997-1012. https://doi.org/10.1016/j.jestch.2017.03.007

Suresh, A., Ajithkumar, N., Kalathil, S., Simon, A., Unnikrishnan, V., Mathew, D., y otros., 2017. An advanced spider-like rocker-bogie suspension system for mars exploration rovers. En J. Kim, F. Karray, P. Sincak, & G. Myung (Ed.), Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing. 447, págs. 423-447. Springer. https://doi.org/10.1007/978-3-319-31293-4_34

Yang, L., Cai, B., Zhang, R., Li, K., & Wang, R., 2018. A new type design of lunar rover suspension structure and its neural network control system. Journal of Intelligent & Fuzzy Systems , 35 (1), 269-281. https://doi.org/10.3233/JIFS-169586

Zhang, J., Jia, X., Zhao, Z., & Gao, R., 2015. Optimization of Positioning Parameters for McPherson Front Suspension based on ADAMS/Car. International Conference on Computer Science and Mechanical Automation (CSMA), (págs. 297-301). Hangzhou. https://doi.org/10.1109/CSMA.2015.66

Zhang, S., Zhao, X., Su, W., Wu, H., Dai, Z., & Chen, Z., 2019. The design of suspension mechanism and analysis of obstacle ability to rescue robots. En K. Deng, Z. Yu, S. Patnaik, & J. Wang (Ed.), Recent Developments in Mechatronics and Intelligent Robotics. ICMIR 2018. Advances in Intelligent Systems and Computing. 856, págs. 677-685. Cham: Springer. https://doi.org/10.1007/978-3-030-00214-5_85

Abstract Views

1469
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912