Red de sensores inalámbricos multisalto para sistemas domóticos de bajo costo y área extendida

E. Mendoza, P. Fuentes, I. Benítez, D. Reina, J. Núñez

Resumen

Las redes de sensores inalámbricos disponen de un campo muy amplio de aplicaciones y aún muchos desafíos pendientes, especialmente aquellos relacionados con la evolución de la electrónica digital, ancho de banda, reducción de costos de implementación, cobertura de red y capacidad de procesamiento. Este documento propone una configuración de red inalámbrica multisalto orientada a instalaciones domóticas inteligentes, basadas en microcontroladores de 32 bits y módulos de comunicación inalámbrica de bajo costo, que permita tener cobertura completa entre los dispositivos del sistema domótico con una reducida pérdida de datos, mejora en la capacidad de procesamiento, adaptabilidad y escalabilidad en los nodos. La evaluación del desempeño de la red considera las siguientes métricas: tiempo de respuesta, alcance de red, escalabilidad y precisión. Los resultados experimentales determinaron una adaptación exitosa del protocolo multisalto AODV, permitiendo una cobertura suficiente para una vivienda unifamiliar, a una velocidad de transmisión de 250Kbps, que garantiza la integridad y seguridad de los datos.

Palabras clave

sensores; redes; sistemas de comunicaciones; redes de comunicaciones; microprocesadores; arquitecturas; control distribuido

Clasificación por materias

Arquitecturas de control y tecnología de computadores

Texto completo:

PDF

Referencias

Ahmad, A., Roslan, M. F., & Amira, A., 2017. Throughput, latency and cost comparisons of microcontroller-based implementations of wireless sensor network (WSN) in high jump sports. In AIP Conference Proceedings (Vol. 1883, No. 1, p. 020010). AIP Publishing. https://doi.org/10.1063/1.5002028

Abdellaoui, M., Gargouri, R., Mezghani, M., 2014. Optimization of WSNs Flooding Rates by Khalimsky Topology. Transactions on Networks and Communications, 2(6), 25-38. https://doi.org/10.14738/tnc.26.598

Al-Haija, Q. A., Al-Qadeeb, H., & Al-Lwaimi, A., 2013. Case Study: Monitoring of AIR quality in King Faisal University using a microcontroller and WSN. Procedia Computer Science, 21, 517-521. https://doi.org/10.1016/j.procs.2013.09.072

Asencio, G., Maestre, J., Escaño, J., Martín Macareno, C., Molina, M., Camacho, E., 2011. Interoperabilidad en Sistemas Domóticos Mediante Pasarela Infrarrojos-ZigBee. Revista Iberoamericana de Automática e Informática industrial 8(4), 397-404. https://doi.org/10.1016/j.riai.2011.09.002

Baroudi, U., Bin-Yahya, M., Alshammari, M., Yaqoub, U., 2019. Ticket- based QoS routing optimization using genetic algorithm for WSN applications in smart grid. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1325-1338. https://doi.org/10.1007/s12652-018-0906-0

Belagali, R., Anusha, A. M., Sangulagi, P., 2015. Energy-Efficient Secure Routing and Aggregation in Military Sensor Network using Multi-Agent Approach. In Applied and Theoretical Computing and Communication Technology (iCATccT), 2015 International Conference on 286-292. IEEE. https://doi.org/10.1109/ICATCCT.2015.7456897

Benítez, J. D., Sosa, E. O., Godoy, D. A., Belloni, E. A., Favret, F., Bareiro, H., Urdinola, R., Olivera, M., 2017. Ampliando la Vida Útil de las WSN por Medio de los Protocolos de Ruteo, Modificación de AODV. In XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Buenos Aires). URL: http://sedici.unlp.edu.ar/handle/10915/61567

Bondorf, S., Jens, B. S., 2010. Statistical response time bounds in randomly deployed wireless sensor networks. In Local Computer Networks (LCN). IEEE 35th Conference on 340-343. IEEE. https://doi.org/10.1109/LCN.2010.5735738

Campamá, D. S., 2012. Sistema operativo para redes inalámbrica de sensores. Tesis de maestría, Pontificia Universidad católica de Chile. URL: https://repositorio.uc.cl/handle/11534/1723

Di Nisio, A., Di Noia, T., Carducci, C. G. C., & Spadavecchia, M., 2016. High dynamic range power consumption measurement in microcontroller-based applications. IEEE Transactions on Instrumentation and Measurement, 65(9), 1968-1976. https://doi.org/10.1109/TIM.2016.2549818

Escribano, J., García, A., de la Fuente, M., 2011. Monitorización de la Condición Física de Personas en Espacios Confinados Mediante Etiquetas RFID con Sensores y Redes Inalámbricas Eficientes. Revista Iberoamericana de Automática e Informática industrial 8(4), 371-384. https://doi.org/10.1016/j.riai.2011.09.004

Espressif Systems, 2018. ESP8266 Non-OS SDK. Version 3.0. URL: https://www.espressif.com/sites/default/files/documentation/2c- esp8266_non_os_sdk_api_reference_en.pdf

Espressif, 2016. ESP8266 Mesh User Guide. Version 1.2. URL: https://docplayer.net/33922006-Esp8266-mesh-user-guide.html

Fajriansyah, B., Ichwan, M., & Susana, R., 2016. Evaluasi Karakteristik XBee Pro dan nRF24L01 sebagai Transceiver Nirkabel. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, 4(1), 83. https://doi.org/10.26760/elkomika.v4i1.83

Fischione, C., 2014. An Introduction to Wireless Sensor Networks. Royal Institute of technology. Draft, version 1.8. URL: https://www.kth.se/social/files/5431a388f276540a05ad2514/An_Introduc tion_WSNS_V1.8.pdf.

García, D., 2015. Estudio de 6loWPAN para su aplicación a Internet de las Cosas. Trabajo de fin de grado. URL: https://riull.ull.es/xmlui/bitstream/handle/915/945/Estudio+de+6loWPAN+para+su+aplicacion+a+Internet+de+las+Cosas.pdf?sequence=1.

Hong, S. H., Kim, B., Eom, D. S., 2007. A base-station centric data gathering routing protocol in sensor networks useful in home automation applications. IEEE Transactions on Consumer Electronics 53(3), 945- 951. https://doi.org/10.1109/TCE.2007.4341570

Hsieh, F. S., Lin, J. B., 2014. A multiagent approach for managing collaborative workflows in supply chains. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 71-76. IEEE. https://doi.org/10.1109/CSCWD.2014.6846819

Jaggi, S., and Wasson, E., 2016. Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN. Industrial Engineering & Management Systems, 15(3), 259-267. https://doi.org/10.7232/iems.2016.15.3.259

Kailas, A., Cecchi, V., & Mukherjee, A., 2012. A survey of communications and networking technologies for energy management in buildings and home automation. Journal of Computer Networks and Communications, 2012(932181), 1-6. https://doi.org/10.1155/2012/932181.

Kelly, S. D. T., Suryadevara, N. K., Mukhopadhyay, S. C., 2013.Towards the Implementation of IoT for Environmental Condition Monitoring in Homes. IEEE Sensors Journal 13(10), 3846-3853. https://doi.org/10.1109/JSEN.2013.2263379

Li, M., Lin H. J., 2015. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Transactions On Industrial Electronics 62(7). 4430-4442. https://doi.org/10.1109/TIE.2014.2379586

Liao, C., Zhu, K., Tang, J., Zhang, S., 2016. Wireless Sensor Network Performance Research for LEACH Based on Multi-Agent Simulation. IEEE International Conference on Agents (ICA) 98-99. IEEE. https://doi.org/10.1109/ICA.2016.031

López Torres, V. 2014. Diseño de un modelo de red domótica libre basada en componentes OpenDomo para aplicación a un pequeño hotel.

Magno, M., Polonelli, T., Benini, L., Popovici, E., 2015. A Low Cost, Highly Scalable Wireless Sensor Network Solution to Achieve Smart LED Light Control for Green Buildings. IEEE Sensors Journal 15(5), 2963-2973. https://doi.org/10.1109/JSEN.2014.2383996

Manda, S., Shukla, Y., Shrivastava, K., Patil, T. B., & Sawant-Patil, S. T., 2018. A Literature Survey on Wireless Sensor Network in Home Automation Based on Internet of Things. https://doi.org/10.26438/ijcse/v6i6.13621368

Medina, C., 2017. Control de Congestión en Redes Inalámbicas de Sensores. Tesis de maestría, Pontificia Universidad Javeriana. Bogota-Colombia.

Mezghani, M., Abdellaoui, P., 2015. WSN intelligent communication based on Khalimsky theory using multi-agent systems. In 2015 SAI Intelligent Systems Conference (IntelliSys) (pp. 871-876). IEEE. https://doi.org/10.1109/IntelliSys.2015.7361245

Microchip, 2020. URL: https://www.microchip.com/wwwproducts/en/ PIC16F628A

Mostafaei, H., 2019. Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567-5575.

https://doi.org/10.1109/TIE.2018.2869345

Narten, T., Nordmark, E., Simpson, W., Soliman, H., 2007. Neighbor Discovery for IP version 6 (IPv6). RFC 4861, https://doi.org/10.17487/RFC4861.

Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B., 2018. Low- power wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893-67926. https://doi.org/10.1109/ACCESS.2018.2879189

Nordic Semiconductor. (2008). nRF24L01 Single Chip 2.4GHz Transceiver. URL: https://www.nordicsemi.com/DocLib?Product=nRF24

Núñez, José Ricardo et al., 2019. Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática industrial, [S.l.], v. 17, n. 1, p. 94-105. https://doi.org/10.4995/riai.2019.11449

Nuñez, J. R., Benítez, I.F., Rodriguez, A., Diaz, S., Oliveira, D., 2019. Tools for the implementation of a SCADA system in a desalination process. IEEE Latin America Transactions, 17(11), 1858-1864. https://doi.org/10.1109/TLA.2019.8986424

Paavola, M., Leiviska, K., 2010. Wireless Sensor Networks in Industrial Automation. In Factory Automation. InTech. https://doi.org/10.5772/9532.

Peñín, P., Díaz, A., Medina, J., Sánchez P., 2017. High-Level Design of Wireless Sensor Networks for Performance Optimization Under Security Hazards. ACM Transactions on Sensor Networks (TOSN) 13(3), 19. https://doi.org/10.1145/3078359.

Perkins, C., Belding, E., Das, S., 2003. Ad hoc On-Demand Distance Vector (AODV) Routing. (No. RFC 3561). https://doi.org/10.17487/RFC3561

Posadas Yagüe, J. L., & Poza Luján, J. L. (2009). Revisión de las arquitecturas de control distribuido. URL: https://riunet.upv.es/handle/10251/6407

Qin, J., Fu, W., Gao, H., Xing W., 2016. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory. IEEE transactions on cybernetics, 47(3), 772-783. https://doi.org/10.1109/TCYB.2016.2526683.

Randhawa, S., 2014. Research Challenges in Wireless Sensor Network: A State of the Play. Conference Proceeding of National Conference of Science, Engineering y Management in Education and Research. arXiv preprint arXiv:1404.1469v1 [cs.NI]

Rawat, P., Singh, K. D., Chaouchi, H., Bonnin, J. M., 2014. Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing 68(1), 1-48. https://doi.org/10.1007/s11227-013-1021-9 https://doi.org/10.1007/s11227-013-1021-9

Rodríguez, A., 2011. Sistemas SCADA. Tercera Edición. Marcombo: Barcelona. ISBN: 978-8426717818.

Saha, Himadri & Mandal, Shashwata & Mitra, Shinjan & Banerjee, Soham & Saha, Urmi., 2017. Comparative Performance Analysis between nRF24L01+ and XBEE ZB Module Based Wireless Ad-hoc Networks. International Journal of Computer Network and Information Security. 9. 36-44. https://doi.org/10.5815/ijcnis.2017.07.05.

Saravanan, S., Poovazhaki, R., Shanker, N., 2018. Cluster Topology in WSN with SCPS for QoS. Wireless Personal Communications, 99(3), 1295- 1314. https://doi.org/10.1007/s11277-017-5185-0

STMicroelectronics, 2018. STM32F103xC STM32F103x, STM32F103xE. DS5792 Rev 13. URL:https://www.st.com/resource/en/datasheet/stm32f103rc.pdf

STMicroelectronics, 2019. STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC. DS9773 Rev 4. URL: https://www.st.com/resource/en/datasheet/stm32f030f4.pdf

Snigdh, I., & Gupta, N. 2016. Quality of service metrics in wireless sensor networks: A survey. Journal of The Institution of Engineers (India): Series B, 97(1), 91-96. https://doi.org/10.1007/s40031-014-0160-6

Suárez, A., and Núñez, J. R., 2019. 1D Convolutional Neural Network for Detecting Ventricular Heartbeats. IEEE Latin America Transactions, 17(12), 1970-1977. https://doi.org/10.1109/TLA.2019.9011541.

Sutagundar, A., Bennur, V., Anusha, A., Bhanu, K., 2016. Agent Based Fault Tolerance in Wireless Sensor Networks. 2016 International Conference on Inventive Computation Technologies (ICICT) 1, 1-6. IEEE. https://doi.org/10.1109/INVENTIVE.2016.7823265

Valencia, G., Núñez, J., Vanegas, M., 2020. Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia. Data in Brief, 27, 104753. https://doi.org/10.1016/j.dib.2019.104753

Vidhya, S., Sasilatha, T., 2018. Secure Data Transfer Using Multi Layer Security Protocol with Energy Power Consumption AODV in Wireless Sensor Networks. Wireless Personal Communications, 103(4), 3055- 3077. https://doi.org/10.1007/s11277-018-5994-9

Villarrubia, G., De Paz, J., De La Iglesia, D., Bajo, J., 2017. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. 17(8), 1775. DOI: https://doi.org/10.3390/s17081775

Wadhwa, L., Deshpande, R., Priye, V., 2016. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Networks, 37, 295- 300. https://doi.org/10.1016/j.adhoc.2015.08.025

Yang, S.H., 2014. Wireless Sensor Network. Londres, Reino Unido: Springer. ISBN 978-1-4471-5505-8.

Yu, K., Xie, Z., Qian, J., y Jin, G., 2013. The Implementation of Electronic Intelligent Tag System Based on Wireless Sensor Network. Communications and Network 5(01), 39. https://doi.org/10.4236/cn.2013.51B010.

Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., & Mukherjee, M., 2018. A survey on fault diagnosis in wireless sensor networks. IEEE Access, 6, 11349-11364. https://doi.org/10.1109/ACCESS.2018.2794519

Abstract Views

3715
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912