Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta

R. Temoltzi-Ávila, R Ávila-Pozos

Resumen

En este trabajo se determina de forma numérica la frontera del conjunto de alcanzabilidad de una ecuación diferencial de segundo orden con una perturbación externa, empleando la solución del problema de la variación máxima de las amplitudes de oscilación de sus soluciones. El método consiste en determinar en un conjunto de funciones dado, la perturbación externa que provoque amplitudes de oscilación máxima en las soluciones de la ecuación diferencial que describe, como caso particular, la dinámica de un sistema mecánico controlable con impactos. Con ayuda de esta perturbación, se determina la existencia de una trayectoria cerrada que describe la frontera del conjunto de alcanzabilidad, lo cual permite establecer condiciones suficientes sobre la estabilidad robusta de las soluciones de la ecuación diferencial. Los resultados se ilustran de forma numérica en casos particulares.


Palabras clave

Ecuaciones diferenciales; sistemas de control no lineal; perturbaciones; estabilidad

Texto completo:

PDF

Referencias

Aleksandrov, V. V., Aleksandrova, O. V., Konovalenko, I., Tikhonova, K. V., 2016. Perturbed stable systems on a plane. Part 1. Moscow University Mechanics Bulletin 71 (5), 108–113. https://doi.org/10.3103/S0027133016050022

Aleksandrov, V. V., Alexandrova, O. V., Prikhod’ko, I. P., Telmotzi-Auila, R., 2007. Synthesis of self-oscillations. Moscow University Mechanics Bulletin 62 (3), 65–68. https://doi.org/10.3103/S0027133007030016

Aleksandrov, V. V., Reyes-Romero, M., Sidorenko, G. Y., Temoltzi-Auila, R., 2010. Stability of controlled inverted pendulum under permanent horizontal perturbations of the supporting point. Mechanics of Solids 45 (2), 187–193. https://doi.org/10.3103/S0025654410020044

Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. SIAM, Philadelphia. https://doi.org/10.1137/1.9781611970777

Bugrov, D. I., Formals’kii, A. M., 2017. Time dependence of the attainability regions of third order systems. Journal of Applied Mathematics and Mecha- nics 81, 106–113. https://doi.org/10.1016/j.jappmathmech.2017.08.004

Bugrov, D.I., 2016. Estimation of the attainability set for a linear system based on a linear matrix inequality. Moscow University Mathematics Bulletin 71, 253–256. https://doi.org/10.3103/S0027132216060061.

Dyskin, A. V., Pasternak, E., Pelinovsky, E., 2012. On the dynamics of oscilators with bi-linear damping and stiffness. Journal of Sound and Vibration 331, 2856–2873. https://doi.org/10..1016/j.jsv.2012.01.031

Elishakoff, I., Ohsaki, M., 2010. Optimization and anti-optimization of structures under uncertainty. Imperial College Press, London. https://doi.org/10.1142/p678

Elsgoltz, L., 1969. Ecuaciones diferenciales y cálculo variacional. Mir, Moscú.

Formal’skii, A. M., 2010. On the synthesis of optimal control for second order systems. Doklady Mathematics 81, 164–167. https://doi.org/10.1134/S1064562410010448

Fridman, E., Shaked, U., 2010. On reachable sets for linear systems with delay and bounded peak inputs. Automatica 39, 2005–2010. https://doi.org/10.1016/S0005- 1098(03)00204-8.

Gomez, L.M., Botero, H., Alvarez, H., di Sciascio, F., 2015. Análisis de la controlabilidad de estado de sistemas irreversibles mediante teoría de conjuntos. Revista Iberoamericana de Automática e Informática industrial 12, 145–153. https://doi.org/10.1016/j.riai.2015.02.002.

Gusev, M.I., 2012. External estimates of the reachability sets of nonlinear controlled systems. Automation and Remote Control 73, 450–461. https://doi.org/10.1134/S0005117912030046.

Gusev, M.I., 2014. Internal approximations of reachable sets of control systems with state constraints. Proceedings of the Steklov Institute of Mathematics 287, 77–92. https://doi.org/10.1134/S0081543814090089.

Holzinger, M.J., Scheeres, D.J., 2011. Reachability set subspace computation for nonlinear systems using sampling methods. 2011 50th IEEE Conference on Decision and Control and European Control Conference , 7317– 7324. https://doi.org/10.1109/CDC.2011.6160728.

Ibrahim, R. A., 2009. Vibro-impact dynamics. Modelling, mapping and applications. Springer-Verlag, Berling. https://doi.org/10.1007/978-3-642-00275-5_8

Kumkov, S.S., Zharinov, A.N., 2004. Constructing attainability sets for nonlinear controlled systems in the plane. IFAC Proceedings Volumes 37, 158– 168. https://doi.org/10.1016/j.jmaa.2007.01.109. iFAC Workshop GSCP-04: Generalized solutions in control problems, Pereslavl-Zalessky, Russia, September 21-29, 2004.

Kurzhanski, A., Valyi, I., 1999. Ellipsoidal calculus for estimation and control. Systems & Control: Foundations & Applications. Birkhäuser, Boston.

Ma, Y., Agarwal, M., Banerjee, S., 2006. Border collision bifurcations in a soft impact system. Physics Letters A 354, 281–287. https://doi.org/10.1016/j.physleta.2006.01.025

Natsiavas, S., 1990. On the dynamics of oscillators with bi-linear damping and stiffness. International Journal of Non-Linear Mechanics 25(5), 535–554. https://doi.org/10.1016/0020-7462(90)90017-4

Parshikov, G.V., Matviychuk, A.R., 2017. On resource-efficient algorithm for non-linear systems approximate reachability set construction. AIP Conference Proceedings 1895, 120007. https://doi.org/10.1063/1.5007424.

Pitarch, J.L., Sala, A., Arino, C.V., 2015. Estabilidad de sistemas Takagi-Sugeno bajo perturbaciones persistentes: estimación de conjuntos inescapables. Revista Iberoamericana de Automática e Informática industrial 12, 457–466. https://doi.org/10.1016/j.riai.2015.09.007.

Shen, C., Zhong, S., 2011. The ellipsoidal bound of reachable sets for linear neutral systems with disturbances. Journal of the Franklin Institute 348, 2570–2585. https://doi.org/10.1016/j.jfranklin.2011.07.017.

Vinnikov, E.V., 2015. Construction of attainable sets and integral funnels of nonlinear controlled systems in the Matlab environment. Computational Mathematics and Modeling 26, 107–119. doi:10.1007/s10598-014-9259-5

Weger, J. D., der Water, V. V., 2000. Grazing impact oscillations. Physical Review E 62, 2030–2041. https://doi.org/10.1103/PhysRevE.62.2030

Yakubovich, V. A., Leonov, G. A., Gelig, A. K., 2004. Stability of stationary sets in control systems with discontinuous nonlinearities. Series on Stability, Vibration and Control of Systems. World Scientific, New Jersey. https://doi.org/10.1142/5442

Zhermolenko, V. N., 1980. Sobre el problema de Bulgakov referente a la desviación máxima de un sistema oscilatorio de segundo orden. Vestn. Mosk. Univ. Ser. 1: Mat. Mekh. 2, 87–91, [En ruso].

Zhermolenko, V. N., 2007. Maximum deviation of oscillating system of the second order with external and parametric disturbances. Journal of Computer and Systems Sciences International 46, 407–411. https://doi.org/10.1134/S1064230707030094

Abstract Views

716
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912