Sobre la mejora esperada de la estimación de la odometría en Exploración Integrada

A. Toriz Palacios, A. Sánchez López

Resumen

El problema de Exploración integrada es la nueva tendencia en la construcción de mapas de ambientes desconocidos; en ella, se integra el viejo paradigma de la localización y mapeo simultáneos (SLAM) con la planificación de movimientos necesarios, para que esta tarea sea realizada de forma autónoma. Sin embargo, aunque el control de movimientos es una parte esencial de este paradigma, los trabajos encontrados en la literatura se han limitado a desarrollar estrategias que mejoren los tiempos de recorridos y la cobertura del ambiente, dejado de lado el impacto que estos puede tener sobre la odometría del robot y, en consecuencia, sobre los requerimientos de los algoritmos de localización. De lo anterior, en este documento se presenta una nueva forma eficiente de exploración de ambientes para el problema de SLAM, que tiene como objetivo mejorar los tiempos de exploración y maximizar la cobertura del área de trabajo, pero además el de minimizar el error odométrico acumulado para simplificar el proceso de localización.

Palabras clave

Robot móvil autónomo; Planificación de rutas; Estimación de movimiento; Errores de posición odométrica; Tasa de error

Clasificación por materias

Exploración Integrada; Error Odométrico; SLAM

Texto completo:

PDF

Referencias

Abbas, T., Arif, M., Ahmed, W., 2006. Measurement and correction of systematic odometry errors caused by kinematics imperfections in mobile robots. SICE-ICASE International Joint Conference, 2073-2078. https://doi.org/10.1109/SICE.2006.315554

Borenstein, J., 1998. Experimental results from internal odometry error correction with the OmniMate mobile robot. IEEE Transactions on Robotics and Automation, 14(6), 963-969. https://doi.org/10.1109/70.736779

Brossard, M., Bonnabel, S., 2018. Learning Wheel Odometry and IMU Errors for Localization. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2019.8794237

Burgard, W., Moors, M., Stachniss, C., Schneider, F. E., 2005. Coordinated multi-robot exploration. IEEE Transactions on robotics, 21(3), 376-386. https://doi.org/10.1109/TRO.2004.839232

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Leonard, J. J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6), 1309-1332. https://doi.org/10.1109/TRO.2016.2624754

Campos, F. M., Marques, M., Carreira, F., Calado, J. M. F., 2017. A complete frontier-based exploration method for Pose-SLAM. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 79-84. https://doi.org/10.1109/ICARSC.2017.7964056

Chen, N. Y., Shaw, J., Lin, H. I., 2017. Exploration method improvements of autonomous robot for a 2-D environment navigation. Journal of Marine Science and Technology, 25(1), 34-42. http://dx.doi.org/10.6119/2fJMST-016-0719-1

Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2007. A randomized strategy for cooperative robot exploration. IEEE International Conference on Robotics and Automation, 768-774. https://doi.org/10.1109/ROBOT.2007.363079

Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2009. The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics, 14(2), 163-175. https://doi.org/10.1109/TMECH.2009.2013617

Freda, L., Loiudice, F., Oriolo, G., 2006. A randomized method for integrated exploration. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2457-2464. https://doi.org/10.1109/IROS.2006.281689

Gil, A., Juliá, M., Reinoso, Ó., 2015. Occupancy grid based graph-SLAM using the distance transform, SURF features and SGD. Engineering Applications of Artificial Intelligence, 40, 1-10. https://doi.org/10.1016/j.engappai.2014.12.010

Hähnel, D., Thrun, S., Wegbreit, B., Burgard, W., 2005. Towards lazy data association in SLAM. Eleventh International Symposium Robotics Research, 421-431. https://doi.org/10.1007/11008941_45

Hanif, M. S., Bilal, M., Munawar, K., Balamash, A. S., 2018. Implementation of an Embedded Testbed for Indoor SLAM. In 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1-8. https://doi.org/10.1109/AICCSA.2018.8612782

Hidalgo-Carrió, J., Hennes, D., Schwendner, J., Kirchner, F., 2017. Gaussian process estimation of odometry errors for localization and mapping. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 5696-5701. https://doi.org/10.1109/ICRA.2017.7989670

Holz, D., Basilico, N., Amigoni, F., Behnke, S., 2010. Evaluating the efficiency of frontier-based exploration strategies. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), 1-8.

Jin, J., Chung, W., 2019. Obstacle Avoidance of Two-Wheel Differential Robots Considering the Uncertainty of Robot Motion on the Basis of Encoder Odometry Information. Sensors, 19(2), 289-299. https://doi.org/10.3390/s19020289

Juliá, M., Gil, A., Payá, L., Reinoso, O., 2008. Local minima detection in potential field based cooperative multirobot exploration. International Journal of Factory Automation, Robotics and Soft Computing, 3.

Lamon, P., Siegwart, R., 2007. 3D position tracking in challenging terrain. The International Journal of Robotics Research, 26(2), 167-186. https://doi.org/10.1007/978-3-540-33453-8_44

Lou, Q., González, F., Kövecses, J., 2019. Kinematic Modeling and State Estimation of Exploration Rovers. IEEE Robotics and Automation Letters, 4(2), 1311-1318. https://doi.org/10.1109/LRA.2019.2895393

Maddahi, Y., Sepehri, N., Maddahi, A., Abdolmohammadi, M., 2012. Calibration of wheeled mobile robots with differential drive mechanisms: An experimental approach. Robotica. 30(6). https://doi.org/10.1017/S0263574711001329

Maddahi, Y., 2018. Off-Line Calibration of Autonomous Wheeled Mobile Robots. In Handbook of Research on Biomimetics and Biomedical Robotics, 375-389. https://doi.org/10.4018/978-1-5225-2993-4.ch016

Ojeda, L., Borenstein, J., 2004. Methods for the reduction of odometry errors in over-constrained mobile robots. Autonomous Robots, 16(3), 273-286. https://doi.org/10.1023/B:AURO.0000025791.45313.01

Prieto, R. A., Cuadra-Troncoso, J. M., Álvarez-Sánchez, J. R., Santosjuanes, I. N., 2013. Reactive Navigation and Online SLAM in Autonomous Frontier-Based Exploration. In International Work-Conference on the Interplay Between Natural and Artificial Computation, 45-55. https://doi.org/10.1007/978-3-642-38622-0_5

Romero, L., Morales, E. F., Sucar, L. E., 2002. An exploration approach for indoor mobile robots reducing odometric errors. In Mexican International Conference on Artificial Intelligence, 51-60. https://doi.org/10.1007/3-540-46016-0_6

Toriz P, A., Sánchez L, A., Bedolla Cordero, J. M. E., 2017. The random exploration graph for optimal exploration of unknown environments. International Journal of Advanced Robotic Systems, 14(1). https://doi.org/10.1177/1729881416687110

Torres-González, A., Martinez-de Dios, J., Ollero, A., 2014. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements. Sensors, 14(5), 7684-7710. DOI: 10.3390/s140507684 https://doi.org/10.3390/s140507684

Yu, N., Wang, S., 2019. Enhanced Autonomous Exploration and Mapping of an Unknown Environment with the Fusion of Dual RGB-D Sensors. Engineering, 5(1), 164-172. https://doi.org/10.1016/j.eng.2018.11.014

Abstract Views

1410
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912