Maniobras cooperativas aplicadas a vehículos automatizados en entornos virtuales y reales

C. E. Hidalgo

https://orcid.org/0000-0002-4663-8777

Spain

Tecnalia Research & Innovation

M. Marcano

Spain

Universidad del País Vasco

G. Fernández

Venezuela, Bolivarian Republic of

Universidad Simón Bolívar

J. M. Pérez

Spain

Tecnalia Research and Innovation

|

Aceptado: 02-03-2019

|

Publicado: 01-01-2020

DOI: https://doi.org/10.4995/riai.2019.11155
Datos de financiación

Descargas

Palabras clave:

Maniobras Cooperativas, Marco Cooperativo Híbrido, ACC, Stop & Go, ITS, Lógica Borrosa

Agencias de apoyo:

Proyecto SerIoT H2020 (Con número de concesiòn 780139)

Resumen:

En los últimos años los Sistemas Inteligentes de Transporte, ITS (del inglés, Intelligent Transportation System) se han convertido en una realidad dentro de la sociedad, aportando soluciones y beneficios a la conducción. Con el fin de contribuir a su desarrollo, el presente trabajo describe un marco cooperativo híbrido capaz de validar maniobras entre múltiples vehículos (virtuales y reales), con el fin de disminuir los costos, tiempos y riesgos asociados al ajuste de los controladores. Para su validación se presentan 3 casos de estudios. El primero consiste en utilizar dos vehículos virtuales para realizar un Control de Crucero Adaptativo, ACC (del inglés, Adaptive Cruise Control) con seguidor de trayectoria. El segundo, emplea un coche real como seguidor y un coche virtual como líder para la maniobra de Stop & Go. Finalmente, se utilizan dos vehículos reales para el ACC. Los algoritmos de seguimiento empleados para las maniobras cooperativas están basados en controladores de lógica borrosa. Los resultados demuestran la versatilidad del marco propuesto, al poder ejecutar las maniobras correctamente en cada uno de los entornos.

Ver más Ver menos

Citas:

Cuadrado, J., Vilela, D., Iglesias, I., Martín, A., Peña, A., 2013. A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort. ECCOMAS Multibody Dynamics.

Da Cunha, F. D., Boukerche, A., Villas, L., Viana, A. C., Loureiro, A. A., 2014. Data communication in vanets: a survey, challenges and applications. Ph.D. thesis, INRIA Saclay; INRIA. https://doi.org/10.1016/j.adhoc.2016.02.017

Driankov, D., Hellendoorn, H., Reinfrank, M., 1996. Introduction. In: An Introduction to Fuzzy Control. Springer, pp. 1-36. https://doi.org/10.1007/978-3-662-03284-8

During, M., Lemmer, K., 2016. Cooperative maneuver planning for cooperative driving. IEEE Intelligent Transportation Systems Magazine 8 (3), 8-22. https://doi.org/10.1109/MITS.2016.2549997

Española, D. G. D. T., Jul. 2015. Seguridad vial. http://www.dgt.es/es/seguridad-vial/.

Fernandez, S., Ito, T., nov 2016. Driver classification for intelligent transportation systems using fuzzy logic. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE. https://doi.org/10.1109/ITSC.2016.7795711

Festag, A., 2014. Cooperative intelligent transport systems standards in europe. IEEE communications magazine 52 (12), 166-172. https://doi.org/10.1109/MCOM.2014.6979970

González, D., Pérez, J., Milanés, V., Nashashibi, F., 2016. A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems 17 (4), 1135-1145. https://doi.org/10.1109/TITS.2015.2498841

Iancu, I., 2012. A mamdani type fuzzy logic controller. In: Fuzzy Logic-Controls, Concepts, Theories and Applications. InTech. https://doi.org/10.5772/36321

Jena, K. S., Joseph, A. V., Senapati, P. R. R., 2016. Fuzzy logic based approach for controlling of a vehicle in its longitudinal motion. Middle-East Journal of Scientific Research 24 (S1), 346-352. https://doi.org/10.1017/S1047198700014406

Lattarulo, R., González, L., Martí, E., Matute, J., Marcano, M., Pérez, J., 2018. Urban motion planning framework based on n-bézier curves considering comfort and safety. Journal of Advanced Transportation 2018. https://doi.org/10.1155/2018/6060924

Lattarulo, R., Marcano, M., Pérez, J., 2017a. Overtaking maneuver for automated driving using virtual environments. In: International Conference on Computer Aided Systems Theory. Springer, pp. 446-453. https://doi.org/10.1007/978-3-319-74727-9

Lattarulo, R., Pérez, J., Dendaluce, M., 2017b. A complete framework for developing and testing automated driving controllers. IFAC-PapersOnLine 50 (1), 258-263. https://doi.org/10.1016/j.ifacol.2017.08.043

Lin, W.-Y., Li, M.-W., Lan, K.-C., Hsu, C.-H., 2010. A comparison of 802.11 a and 802.11 p for v-to-i communication: A measurement study. In: International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness. Springer, pp. 559-570. https://doi.org/10.1007/978-3-642-29222-4

Marcano, M., Matute, J. A., Lattarulo, R., Martí, E., Pérez, J., 2018. Low speed longitudinal control algorithms for automated vehicles in simulation and real platforms. Complexity 2018. https://doi.org/10.1155/2018/7615123

Marzbanrad, J., Moghaddam, T.-z., et al., 2015. Prediction of drivers accelerating behavior in the stop and go maneuvers using genetic algorithm-artificial neural network hybrid intelligence. International Journal of Automotive Engineering 5 (2), 986-998.

Milanés, V., Villagrá, J., Godoy, J., González, C., 2012. Comparing fuzzy and intelligent pi controllers in stop-and-go manoeuvres. IEEE Transactions on Control Systems Technology 20 (3), 770-778. https://doi.org/10.1109/TCST.2011.2135859

Milanes, V., Villagra, J., Godoy, J., Simo, J., Pérez, J., Onieva, E., 2012. An intelligent v2i-based traffic management system. IEEE Transactions on Intelligent Transportation Systems 13 (1), 49-58. https://doi.org/10.1109/TITS.2011.2178839

Morcillo, C. G., 2011. Lógica difusa. una introducción práctica. Universidad de Castilla-La Mancha.

Pérez, J., Milanés, V., Alonso, J., Onieva, E., De Pedro, T., 2010. Adelantamiento con vehículos autónomos en carreteras de doble sentido. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (3), 25-33. https://doi.org/10.1016/S1697-7912(10)70039-X

Rastelli, J. P., Peñas, M. S., 2015. Fuzzy logic steering control of autonomous vehicles inside roundabouts. Applied Soft Computing 35, 662-669. https://doi.org/10.1016/j.asoc.2015.06.030

Rizvi, R., Kalra, S., Gosalia, C., Rahnamayan, S., 2014. Fuzzy adaptive cruise control system with speed sign detection capability. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, pp. 968-976. https://doi.org/10.1109/FUZZ-IEEE.2014.6891748

Schmied, R., Moser, D.,Waschl, H., del Re, L., 2016. Scenario model predictive control for robust adaptive cruise control in multi-vehicle traffic situations. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, pp. 802-807. https://doi.org/10.1109/IVS.2016.7535479

Sriranjan, S., Lattarulo, R., Pérez-Rastelli, J., Ibanez-Guzman, J., Pena, A., 2017. Lateral controllers using neuro-fuzzy systems for automated vehicles: A comparative study.

Sugeno, M., 1985. An introductory survey of fuzzy control. Information sciences 36 (1-2), 59-83. https://doi.org/10.1016/0020-0255(85)90026-X

Sugeno, M., Murakami, K., 1984. Fuzzy parking control of model car. In: Decision and Control, 1984. The 23rd IEEE Conference on. Vol. 23. IEEE, pp. 902-903. https://doi.org/10.1109/CDC.1984.272144

Villagrá, J., Milanés, V., Pérez, J., González, C., 2010. Model-free control techniques for stop & go systems. In: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, pp. 1899-1904. https://doi.org/10.1109/ITSC.2010.5625228

Wang, X., Fu, M., Ma, H., Yang, Y., 2015. Lateral control of autonomous vehicles based on fuzzy logic. Control Engineering Practice 34, 1-17. https://doi.org/10.1016/j.conengprac.2014.09.015

Zohdy, I. H., Kamalanathsharma, R. K., Rakha, H., 2012. Intersection management for autonomous vehicles using icacc. In: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on. IEEE, pp. 1109-1114. https://doi.org/10.1109/ITSC.2012.6338827

Ver más Ver menos