Control descentralizado basado en eventos para el consenso de múltiples robots tipo péndulo invertido en el esquema líder-seguidor

O.D. Ramírez-Cárdenas, J.F. Guerrero-Castellanos, J. Linares-Flores, S. Durand, W.F. Guerrero-Sánchez

Resumen

El trabajo presenta el diseno de una estrategia de control distribuido con comunicación activada por eventos, que resuelve el problema de consenso líder-seguidor, de un conjunto de robots móviles tipo péndulo invertido (RMPI). La linealización de las ecuaciones de movimiento de los RMPI, alrededor del punto de equilibrio, permiten explotar las propiedades de planitud diferencial, dando lugar a una reparametrizacion del sistema mediante la salida plana. Asumiendo que los vehículos se comunican mediante una red, cuya topología es representada por un grafo no dirigido y fuertemente conectado, se disena una ley de control distribuido y una funcion de evento que indica el instante en el que el i-ésimo vehículo debe transmitir informacion (su estado) a sus vecinos. El resultado es un intercambio asíncrono de informacion entre vehículos y donde el tiempo entre eventos no es equidistante. El analisis de estabilidad se lleva a cabo en el sentido de Lyapunov y en el sentido entrada-estado ISS (Input-to-State Stability). Los resultados en simulacion numérica muestran el buen desempeño del consenso de la red de vehículos en dos escenarios representativos: regulacion y seguimiento de trayectoria.


Palabras clave

Control basado en eventos; agentes; control de consenso; sistemas de transporte y vehículos; robots móviles y vehículos autónomos inteligentes; teoría de control automático

Clasificación por materias

140: Control de sistemas en red y complejos a gran escala

Texto completo:

PDF

Referencias

Ahmed, N., Cortes, J., Martinez, S., 2016a. Distributed control and estimation of robotic vehicle networks: Overview of the special issue. IEEE Control Systems 36 (2), 36-40. https://doi.org/10.1109/MCS.2015.2512030

Ahmed, N., Cortes, J., Martinez, S., 2016b. Distributed control and estimation of robotic vehicle networks: Overview of the special issue-part II. IEEE Control Systems 36 (4), 18-21. https://doi.org/10.1109/MCS.2016.2558398

Aström, K. J., Murray, R. M., 2010. Feedback systems: an introduction for scientists and engineers. Princeton University Press. https://doi.org/10.2307/j.ctvcm4gdk

Brisilla, R., Sankaranarayanan, V., 2015. Nonlinear control of mobile inverted pendulum. Robotics and Autonomous Systems 70, 145 - 155. https://doi.org/10.1016/j.robot.2015.02.012

Bullo, F., Cortés, J., Martinez, S., 2009. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms: A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press. https://doi.org/10.1515/9781400831470

Chung, T. L., Bui, T. H., Nguyen, T. T., Kim, S. B., Jul 2004. Sliding mode control of two-wheeled welding mobile robot for tracking smooth curved welding path. KSME International Journal 18 (7), 1094-1106. https://doi.org/10.1007/BF02983284

Dimarogonas, D. V., Frazzoli, E., Johansson, K. H., 2012. Distributed eventtriggered control for multi-agent systems. IEEE Transactions on Automatic Control 57 (5), 1291-1297. https://doi.org/10.1109/TAC.2011.2174666

Durand, S., Marchand, N., Aug 2009. Further results on event-based pid controller. In: Control Conference (ECC), 2009 European. pp. 1979-1984. https://doi.org/10.23919/ECC.2009.7074694

Frías, O. O. G., 2013. Estabilización del péndulo invertido sobre dos ruedas mediante el método de lyapunov. Revista Iberoamericana de Automática e Informática Industrial RIAI 10 (1), 30 - 36. https://doi.org/10.1016/j.riai.2012.11.003

Garcia, E., Cao, Y., Wang, X., Casbeer, D. W., July 2015. Decentralized eventtriggered consensus of linear multi-agent systems under directed graphs. In: 2015 American Control Conference (ACC). pp. 5764-5769. https://doi.org/10.1109/ACC.2015.7172242

Ge, X., Han, Q. L., 2017. Distributed formation control of networked multiagent systems using a dynamic event-triggered communication mechanism. IEEE Transactions on Industrial Electronics PP (99), 1-1.

Grasser, F., D'Arrigo, A., Colombi, S., Rufer, A. C., Feb 2002. Joe: a mobile, inverted pendulum. IEEE Transactions on Industrial Electronics 49 (1), 107-114. https://doi.org/10.1109/41.982254

Guerrero Castellanos, J. F., Vega-Alonzo, A., Marchand, N., Durand, S., Linares-Flores, J., Mino-Aguilar, G., 2017. Real-time event-based formation control of a group of vtol-uavs. In: Proceedings of the 3rd IEEE International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). Hal-01527633. https://doi.org/10.1109/EBCCSP.2017.8022817

Guinaldo, M., Fábregas, E., Farias, G., Dormido-Canto, S., Chaos, D., Sánchez, J., Dormido, S., 2013. A mobile robots experimental environment with event-based wireless communication. Sensors 13 (7), 9396-9413. https://doi.org/10.3390/s130709396

Hebertt Sira-Ramírez, Alberto Luviano-Juárez, M. R.-N. E.-W. Z.-B., 2017. Active Disturbance Rejection Control of Dynamic Systems. Butterworth- Heinemann.

Lewis, F. L., Zhang, H., Hengster-Movric, K., Das, A., 2013. Cooperative control of multi-agent systems: optimal and adaptive design approaches. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-5574-4

Li, Z., Yang, C., Fan, L., 2003. Advanced Control of Wheeled Inverted Pendulum Systems. Springer-Verlag London.

Marchand, N., Durand, S., Guerrero-Castellanos, J. F., 2013. A general formula for event-based stabilization of nonlinear systems. Automatic Control, IEEE Transactions on 58 (5), 1332-1337. https://doi.org/10.1109/TAC.2012.2225493

Müllhaupt, P., 2009. Introduction à l'analyse et à la commande des systèmes non linéaires. PPUR Presses polytechniques.

Olfati-Saber, R., Murray, R. M., 2004. Consensus problems in networks of agents with switching topology and time-delays. Automatic Control, IEEE Transactions on 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113

Pathak, K., Franch, J., Agrawal, S. K., June 2005. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics 21 (3), 505-513. https://doi.org/10.1109/TRO.2004.840905

Ren, W., Beard, R. W., 2008. Distributed consensus in multi-vehicle cooperative control. Springer. https://doi.org/10.1007/978-1-84800-015-5

Salerno, A., Angeles, J., Sept 2003. On the nonlinear controllability of a quasiholonomic mobile robot. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Vol. 3. pp. 3379-3384 vol.3.

Sánchez, J., Guarnes, M., Dormido, S., 2009. On the application of different event-based sampling strategies to the control of a simple industrial process. Sensors 9, 6795-6818. https://doi.org/10.3390/s90906795

Sanchez-Santana, J., Guerrero-Castellanos, J., Villarreal-Cervantes, M., Ramírez-Martínez, S., 2018. Control distribuido y disparado por eventos para la formación de robots móviles tipo (3, 0) ' ?. In: Congreso Nacional de Control Automático.

Schinstock, D., McGahee, K., Smith, S., July 2016. Engaging students in control systems using a balancing robot in a mechatronics course. In: 2016 American Control Conference (ACC). pp. 6658-6663. https://doi.org/10.1109/ACC.2016.7526719

Segway, 2018. Segway human transporter. URL: http://www.segway.com

Seyboth, G. S., Dimarogonas, D. V., Johansson, K. H., 2013. Event-based broadcasting for multi-agent average consensus. Automatica 49 (1), 245- 252. https://doi.org/10.1016/j.automatica.2012.08.042

Sira-Ramírez, H., Agrawal, S. K., 2004. Differentially Flat Systems. Marcel Dekker, Inc. https://doi.org/10.1201/9781482276640

Tabuada, P., 2007. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52 (9), 1680-1685. https://doi.org/10.1109/TAC.2007.904277

Tsai, C. C., Li, Y. X., Tai, F. C., Sept 2017. Backstepping sliding-mode leader- follower consensus formation control of uncertain networked heterogeneous nonholonomic wheeled mobile multirobots. In: 2017 56th Annual Conferen- ce of the Society of Instrument and Control Engineers of Japan (SICE). pp. 1407-1412. https://doi.org/10.23919/SICE.2017.8105661

Velasco, M., Martí, P., Bini, E., 2009. On lyapunov sampling for event-driven controllers. In: Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. IEEE, pp. 6238-6243. https://doi.org/10.1109/CDC.2009.5400541

Xie, D., Xu, S., Zhang, B., Li, Y., Chu, Y., 2016. Consensus for multi-agent systems with distributed adaptive control and an event-triggered communication strategy. IET Control Theory Applications 10 (13), 1547-1555. https://doi.org/10.1049/iet-cta.2015.1221

Yamamoto, Y., 2009. Nxtway-gs model-based design.

Yang, D., Ren, W., Liu, X., Dec 2014. Decentralized consensus for linear multi- agent systems under general directed graphs based on event-triggered/self- triggered strategy. In: 53rd IEEE Conference on Decision and Control. pp. 1983-1988. https://doi.org/10.1109/CDC.2014.7039689

Zhou, F., Huang, Z., Yang, Y., Wang, J., Li, L., Peng, J., 2017. Decentralized event-triggered cooperative control for multi-agent systems with uncertain dynamics using local estimators. Neurocomputing 237, 388 - 396. https://doi.org/10.1016/j.neucom.2017.01.029

Abstract Views

2369
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912