Clasificación de objetos usando percepción bimodal de palpación única en acciones de agarre robótico

Autores/as

  • E. Velasco Universidad de las Fuerzas Armadas ESPE
  • B.S. Zapata-Impata Universidad de Alicante
  • P. Gil Universidad de Alicante https://orcid.org/0000-0001-9288-0161
  • F. Torres Universidad de Alicante

DOI:

https://doi.org/10.4995/riai.2019.10923

Palabras clave:

Manipuladores robóticos, Percepción propioceptiva-táctil, Aprendizaje propioceptivo-táctil, Clasificación de objetos, Reconocimiento de objetos

Resumen

Este trabajo presenta un método para clasificar objetos agarrados con una mano robótica multidedo combinando en un descriptor híbrido datos propioceptivos y táctiles. Los datos propioceptivos se obtienen a partir de las posiciones articulares de la mano y los táctiles se extraen del contacto registrado por células de presión instaladas en las falanges. La aproximación propuesta permite identificar el objeto aprendiendo de forma implícita su geometría y rigidez usando los datos que facilitan los sensores. En este trabajo demostramos que el uso de datos bimodales con técnicas de aprendizaje supervisado mejora la tasa de reconocimiento. En la experimentación, se han llevado a cabo más de 3000 agarres de hasta 7 objetos domésticos distintos, obteniendo clasificaciones correctas del 95%con métrica F1, realizando una única palpación del objeto. Además, la generalización del método se ha verificado entrenando nuestro sistema con unos objetos y posteriormente, clasificando otros nuevos similares.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

B.S. Zapata-Impata, Universidad de Alicante

Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

P. Gil, Universidad de Alicante

-Profesor Titular de Universidad en el Depto de Física, Ingeniería de Sistemas y Teoría de la Señal de la Universidad de Alicante.

-Secretario del Instituto Universitario de Investigación Informática de la Universidad de Alicante.

F. Torres, Universidad de Alicante

Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

Citas

Bae, J., Park, S., Park, J., Baeg, M., Kim, D., Oh, S., Oct 2012. Development of a low cost anthropomorphic robot hand with high capability. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 4776-4782. https://doi.org/10.1109/IROS.2012.6386063

Baishya, S. S., Bäuml, B., Oct 2016. Robust material classification with a tactile skin using deep learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 8-15. https://doi.org/10.1109/IROS.2016.7758088

Bergquist, T., Schenck, C., Ohiri, U., Sinapov, J., Griffith, S., Stoytchev, E., 2009. Interactive object recognition using proprioceptive feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)-Workshop: Semantic Perception for Robot Manipulation. URL: http://www.willowgarage.com/iros09spmm

Bishop, C., 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York.

Cervantes, J., Taltempa, J., Lamont, F. G., Castilla, J. S. R., Rendon, A. Y., Jalili, L. D., 2017. Análisis comparativo de las técnicas utilizadas en un sistema de reconocimiento de hojas de planta. Revista Iberoamericana de Automática e Informática Industrial 14 (1), 104-114. https://doi.org/10.1016/j.riai.2016.09.005

Delgado, A., Corrales, J., Mezouar, Y., Lequievre, L., Jara, C., Torres, F., 2017. Tactile control based on gaussian images and its application in bi-manual manipulation of deformable objects. Robotics and Autonomous Systems 94, 148 - 161. https://doi.org/10.1016/j.robot.2017.04.017

Glorot, X., Bordes, A., Bengio, Y., 11-13 Apr 2011. Deep sparse rectifier neural networks. In: Gordon, G., Dunson, D., Dudík, M. (Eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Vol. 15 of Proceedings of Machine Learning Research. PMLR, Fort Lauderdale, FL, USA, pp. 315-323. URL: http://proceedings.mlr.press/v15/glorot11a.html

Guo, D., Kong, T., Sun, F., Liu, H., May 2016. Object discovery and grasp detection with a shared convolutional neural network. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). pp. 2038-2043. https://doi.org/10.1109/ICRA.2016.7487351

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference and prediction. Springer-Verlag New York. https://doi.org/10.1007/978-0-387-84858-7

Homberg, B. S., Katzschmann, R. K., Dogar, M. R., Rus, D., Sep. 2015. Haptic identification of objects using a modular soft robotic gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1698-1705. https://doi.org/10.1109/IROS.2015.7353596

Homberg, B. S., Katzschmann, R. K., Dogar, M. R., Rus, D., Mar 2019. Robust proprioceptive grasping with a soft robot hand. Autonomous Robots 43 (3), 681-696. https://doi.org/10.1007/s10514-018-9754-1

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on International Conference on Machine Learning. Vol. 15. JMLR, pp. 448-456.

Kang, L., Ye, P., Li, Y., Doermann, D., June 2014. Convolutional neural networks for no-reference image quality assessment. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1733-1740. https://doi.org/10.1109/CVPR.2014.224

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI'95. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1137-1143. URL: http://dl.acm.org/citation.cfm?id=1643031.1643047

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. NIPS'12. Curran Associates Inc., USA, pp. 1097-1105. URL: http://dl.acm.org/citation.cfm?id=2999134.2999257

Liu, H., Wu, Y., Sun, F., Guo, D., 2017a. Recent progress on tactile object recognition. International Journal of Advanced Robotic Systems 14 (4), 1729881417717056. https://doi.org/10.1177/1729881417717056

Liu, H., Yu, Y., Sun, F., Gu, J., 2017b. Visual-tactile fusion for object recognition. IEEE Transactions on Automation Science and Engineering 14 (2), 996-1008. https://doi.org/10.1109/TASE.2016.2549552

Montano, A., Su'arez, R., 2013. Object shape reconstruction based on the object manipulation. 2013 16th International Conference on Advanced Robotics, ICAR 2013, 1-6. https://doi.org/10.1109/ICAR.2013.6766571

Nasrabadi, N. M., 2007. Pattern recognition and machine learning. Journal of Electronic Imaging 16 (4). https://doi.org/10.1117/1.2819119

National Instruments, 2018. The LabView website. http://www.ni.com/en-us/shop/labview.html, online; accedido 05 Noviembre 2018.

Navarro, S. E., Gorges, N.,Wörn, H., Schill, J., Asfour, T., Dillmann, R., March 2012. Haptic object recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium (HAPTICS). pp. 497-502. https://doi.org/10.1109/HAPTIC.2012.6183837

Pascanu, R., Montufar, G., Bengio, Y., April 2014. On the number of inference regions of deep feed forward networks with piece-wise linear activations. In: International Conference on Learning Representations (ICLR). URL: https://arxiv.org/abs/1312.6098

Pezzementi, Z., Plaku, E., Reyda, C., Hager, G. D., June 2011. Tactile-object recognition from appearance information. IEEE Transactions on Robotics 27 (3), 473-487. https://doi.org/10.1109/TRO.2011.2125350

Powers, D. M. W., 2011. Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies 2 (1), 37-63.

Quigley, M., Conley, K., Gerkey, B., J.Faust, Foote, T., Leibs, J., Wheeler, R., Ng, A., May 2009. Ros: an open-source robot operating system. In: IEEE International Conference on Robotics and Automation (ICRA): Workshop on Open Source Software. URL: http://www.willowgarage.com/papers/ros-open-source-robot-operating-system

Reinecke, J., Dietrich, A., Schmidt, F., Chalon, M., May 2014. Experimental comparison of slip detection strategies by tactile sensing with the biotac on the dlr hand arm system. In: IEEE International Conference on Robotics and Automation (ICRA). pp. 2742-2748. https://doi.org/10.1109/ICRA.2014.6907252

Rispal, S., Rana, A. K., Duchaine, V., 2017. Texture roughness estimation using dynamic tactile sensing. 2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017, 555-562. https://doi.org/10.1109/ICCAR.2017.7942759

Sanchez, J., Corrales, J.-A., Bouzgarrou, B.-C., Mezouar, Y., 2018. Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey. The International Journal of Robotics Research 37 (7), 688-716. https://doi.org/10.1177/0278364918779698

Schmitz, A., Bansho, Y., Noda, K., Iwata, H., Ogata, T., Sugano, S., Nov 2014. Tactile object recognition using deep learning and dropout. In: 2014 IEEERAS International Conference on Humanoid Robots. pp. 1044-1050. https://doi.org/10.1109/HUMANOIDS.2014.7041493

Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard,W., Oct 2009. Object identification with tactile sensors using bag-of-features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 243-248. https://doi.org/10.1109/IROS.2009.5354648

Shalabi, L., Shaaban, Z., Kasasbeh, B., David, M., 2006. Data mining: A preprocessing engine. Journal of Computer Science 2 (9), 735-739. https://doi.org/10.3844/jcssp.2006.735.739

Sinapov, J., Bergquist, T., Schenck, C., Ohiri, U., Griffith, S., Stoytchev, A., 2011. Interactive object recognition using proprioceptive and auditory feedback. The International Journal of Robotics Research 30 (10), 1250-1262. https://doi.org/10.1177/0278364911408368

Spiers, A. J., Liarokapis, M. V., Calli, B., Dollar, A. M., apr 2016. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors. IEEE Transactions on Haptics 9 (2), 207-220. URL: http://ieeexplore.ieee.org/document/7390277/ https://doi.org/10.1109/TOH.2016.2521378

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15, 1929-1958. URL: http://jmlr.org/papers/v15/srivastava14a.html

Tekscan, 2018. The Tekscan website. https://www.tekscan.com, online; accedido 05 Noviembre 2018.

Velasco-Sanchez, 2018. Base de datos de agarres con Allegro y Tekscan. https://github.com/EPVelasco/Descriptores de agares, online; accedido 05 Noviembre 2018.

Velasco-Sanchez, E., Zapata-Impata, B. S., Gil, P., Torres, F., 2018. Reconocimiento de objetos agarrados con sensorizado híbrido propioceptivo-táctil. In: XXXIX Jornadas de Automática. CEA-IFAC, pp. 224-232. URL: https://www.eweb.unex.es/eweb/ja2018/actas.html

Vásquez, A., Perdereau, V., 2017. Proprioceptive shape signatures for object manipulation and recognition purposes in a robotic hand. Robotics and Autonomous Systems 98, 135 - 146. URL: http://www.sciencedirect.com/science/article/pii/S092188901630700X https://doi.org/10.1016/j.robot.2017.06.001

Zapata-Impata, B. S., Gil, P., Torres, F., 2018. Non-matrix tactile sensors: How can be exploited their local connectivity for predicting grasp stability? In: IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS). Workshop on Robotac: New Progress in Tactile Perception And Learning in Robotics. IEEE. URL: https://arxiv.org/abs/1809.05551

Zapata-impata, B. S., Gil, P., Torres, F., 2019. Learning Spatio Temporal Tactile Features with a ConvLSTM for the Direction Of Slip Detection. Sensors 19 (3), 1-16. URL: https://www.mdpi.com/1424-8220/19/3/523 DOI: 10.3390/s19030523 https://doi.org/10.3390/s19030523

Descargas

Publicado

01-01-2020

Cómo citar

Velasco, E., Zapata-Impata, B., Gil, P. y Torres, F. (2020) «Clasificación de objetos usando percepción bimodal de palpación única en acciones de agarre robótico», Revista Iberoamericana de Automática e Informática industrial, 17(1), pp. 44–55. doi: 10.4995/riai.2019.10923.

Número

Sección

Artículos