Sistema de posicionamiento en interiores utilizando señales de radio estaciones FM comerciales y Deep Learning

J. Roman

Colombia

Instituto Tecnológico Metropolitano

Grupo de Automática, Electrónica y Ciencias Computacionales

D. Marquez-Viloria

https://orcid.org/0000-0002-0168-7276

Colombia

Instituto Tecnológico Metropolitano

Grupo de Automática, Electrónica y Ciencias Computacionales

R. A. Velásquez

Colombia

Universidad de Antioquia

Grupo de Sistemas Embebidos e Inteligencia Computacional SISTEMIC, Facultad de Ingeniería

J. Botero-Valencia

Colombia

Instituto Tecnológico Metropolitano

Grupo de Automática, Electrónica y Ciencias Computacionales
|

Aceptado: 20-06-2019

|

Publicado: 01-01-2020

DOI: https://doi.org/10.4995/riai.2019.10894
Datos de financiación

Descargas

Palabras clave:

Estimación de la posición, Frecuencia Modulada, Interiores, Señales de radio, Sistemas de posicionamiento

Agencias de apoyo:

Grupo de investigación AECC (COL0053581) del Instituto Tecnológico Metropolitano

proyecto P14208.

Resumen:

Para dar solución al problema de posicionamiento en interiores, muchos autores han propuesto el uso de diversas técnicas. Desde la simulación de un Sistema de Posicionamiento Global (GPS) a través de antenas Pseudolites, la construcción de campos magnéticos artificiales, el uso de diversos sensores como visión, ultrasonido, unidades de medida inercial, entre otros. Hasta el uso de transmisores y receptores en el rango de la Radio Frecuencia como los presentes en una oficina. Muchos de los sistemas anteriormente mencionados dependen para su correcto funcionamiento de una instalación y configuración de equipos en el lugar de posicionamiento, lo cual puede llevar en ocasiones a costosas implementaciones. Es por esto que para realizar este trabajo hemos propuesto una metodología de posicionamiento en interiores que no requiere de adecuaciones e instalaciones en el lugar de aplicación. La metodología propuesta hace uso de las radio estaciones FM existentes y utiliza algoritmos de Deep Learning como algoritmo de posicionamiento.

Ver más Ver menos

Citas:

Adler, S., Schmitt, S., 2014. Path loss and multipath effects in a real world indoor localization scenario. 2014 11th Workshop on Positioning, Navigation and Communication, WPNC 2014 1. https://doi.org/10.1109/WPNC.2014.6843300

Al, M., Amali, A., Khir, M. H., Saad, N. M., Dass, S. C., 2017. WiFi Fingerprinting Indoor Positioning with Multiple Access Points in a Single Base Station using Probabilistic Method. International Journal of Applied Engineering Research 12 (6), 1102-1113.

Ali-Rantala, P., Ukkonen, L., Sydanheimo, L., Keskilammi, M., Kivikoski, M., 2003. Different kinds of walls and their e

ect on the attenuation of radiowaves indoors. IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450) 3, 1020-1023. https://doi.org/10.1109/APS.2003.1220085

Anastasijevi, A., Neskovi, A., 2012. A practical realisation of kNN indoor positioning model for GSM. In: Telecommunications Forum (TELFOR), 2012 20th. No. m. pp. 1-4. https://doi.org/10.1109/TELFOR.2012.6419576

Batistíc, L., Tomic, M., 2018. Overview of Indoor Positioning System Technologies. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 473-478. https://doi.org/10.23919/MIPRO.2018.8400090

Blankenbach, J., Norrdine, A., Hellmers, H., 2012. A robust and precise 3d indoor positioning system for harsh environments. In: Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on. IEEE, pp. 1-8. https://doi.org/10.1109/IPIN.2012.6418863

Campos, R., Lovisolo, L., 2015. RF Positioning: Fundamentals, Applications, and Tools:. GNSS technology and applications series. Artech House, Ch. Fundamentals Of RF Fingerprint, pp. 79-109. URL: https://books.google.com.co/books?id=oLTQCgAAQBAJ

Chao, H., Gu, Y., Gross, J., Guo, G., Fravolini, M. L., Napolitano, M. R., 2013. A comparative study of optical flow and traditional sensors in uav navigation. In: American Control Conference (ACC), 2013. IEEE, pp. 3858-3863.

Chen, Y., Lymberopoulos, D., Liu, J., Priyantha, B., 2013. Indoor localization using FM signals. IEEE Transactions on Mobile Computing 12 (8), 1502-1517. https://doi.org/10.1109/TMC.2013.58

Danymol, R., Ajitha, T., Gandhiraj, R., Dec 2013. Real-time communication system design using rtl-sdr and raspberry pi. In: 2013 International Conference on Advanced Computing and Communication Systems. pp. 1-5. https://doi.org/10.1109/ICACCS.2013.6938691

De Angelis, G., Pasku, V., De Angelis, A., Dionigi, M., Mongiardo, M., Moschitta, A., Carbone, P., 2015. An indoor ac magnetic positioning system. IEEE Transactions on Instrumentation and Measurement 64 (5), 1267-1275. https://doi.org/10.1109/TIM.2014.2381353

Do, T.-H., Hwang, J., Yoo, M., 2013. Tdoa based indoor visible light positioning systems. In: Ubiquitous and Future Networks (ICUFN), 2013 Fifth International Conference on. IEEE, pp. 456-458.

Domingo-Perez, F., Lázaro-Galilea, J. L., Martín-Gorostiza, E., Salido-Monzú, D.,Wieser, A., 2014. Evolutionary optimization of sensor deployment for an indoor positioning system with unknown number of anchors. In: Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), 2014. IEEE, pp. 195-202. https://doi.org/10.1109/UPINLBS.2014.7033728

Interaction, M., 2010. Indoor Positioning Using FM Radio. International Journal of Handheld Computing Research (IJHCR) 1 (3), 19-31. https://doi.org/10.4018/jhcr.2010070102

Khalajmehrabadi, A., Member, S., Gatsis, N., Akopian, D., Member, S., 2017. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges (c), 1-30. https://doi.org/10.1109/COMST.2017.2671454

Kuflik, T., Lanir, J., Dim, E., Wecker, A., Corra, M., Zancanaro, M., 2012. Indoor Positioning in Cultural Heritage: Challenges and a Solution, 1-5. https://doi.org/10.1109/EEEI.2012.6376935

Le, W., Wang, Z., Wang, J., Zhao, G., Miao, H., 2014. A Novel WIFI Indoor Positioning Method Based on Genetic Algorithm and Twin Support Vector Regression. In: Control and Decision Conference (2014 CCDC), The 26th Chinese. No. 61174059. pp. 4859-4862. https://doi.org/10.1109/CCDC.2014.6853043

Le Dortz, N. and Gain, F. and Zetterberg, P., 2012. Wifi Fingerprint Indoor Positioning System Using Probability Distribution Comparison. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, 2301-2304. https://doi.org/10.1109/ICASSP.2012.6288374

Lee, C., Chang, Y., Park, G., Ryu, J., Jeong, S.-G., Park, S., Park, J. W., Lee, H. C., Hong, K.-s., Lee, M. H., 2004. Indoor positioning system based on incident angles of infrared emitters. In: Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE. Vol. 3. IEEE, pp. 2218-2222.

Liu, H., Member, S., Darabi, H., Banerjee, P., Liu, J., 2007. Survey of Wireless Indoor Positioning Techniques and Systems 37 (6), 1067-1080. https://doi.org/10.1109/TSMCC.2007.905750

Luo, P., Zhang, M., Zhang, X., Cai, G., Han, D., Li, Q., 2013. An indoor visible light communication positioning system using dual-tone multi-frequency technique. In: Optical Wireless Communications (IWOW), 2013 2nd International Workshop on. IEEE, pp. 25-29. https://doi.org/10.1109/IWOW.2013.6777770

Machaj, J., Brida, P., 2014. Using GSM Signals for Fingerprint-based Indoor Positioning System. In: ELEKTRO, 2014. pp. 64-67. https://doi.org/10.1109/ELEKTRO.2014.6847872

Mainetti, L., Patrono, L., Sergi, I., 2014. A Survey on Indoor Positioning Systems. 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM). https://doi.org/10.1109/SOFTCOM.2014.7039067

Matic, A., Popleteev, A., Osmani, V., Mayora-Ibarra, O., 2010. FM radio for indoor localization with spontaneous recalibration. In: Pervasive and Mobile Computing. Vol. 6. Elsevier B.V., pp. 642-656. URL: http://dx.doi.org/10.1016/j.pmcj.2010.08.005 https://doi.org/10.1016/j.pmcj.2010.08.005

Moghtadaiee, V., Dempster, A. G., 2014. FM Radio Signals. IEEE TRANSACTIONS ON BROADCASTING 60 (2), 336-346. https://doi.org/10.1109/TBC.2014.2322771

Moghtadaiee, V., Dempster, A. G., Lim, S., 2011. Indoor localization using FM radio signals: A fingerprinting approach. 2011 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2011, 3-9. https://doi.org/10.1109/IPIN.2011.6071932

Murata, S., Yara, C., Kaneta, K., Ioroi, S., Tanaka, H., 2014. Accurate indoor positioning system using near-ultrasonic sound from a smartphone. In: Next Generation Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth International Conference on. IEEE, pp. 13-18. https://doi.org/10.1109/NGMAST.2014.17

Mustafah, Y. M., Azman, A. W., Akbar, F., 2012. Indoor uav positioning using stereo vision sensor. Procedia Engineering 41, 575-579. https://doi.org/10.1016/j.proeng.2012.07.214

Niu, J., Wang, B., Cheng, L., Rodrigues, J. J. P. C., 2015. WicLoc : An Indoor Localization System based on WiFi Fingerprints and Crowdsourcing. In: 2015 IEEE International Conference on Communications (ICC). pp. 3008-3013. https://doi.org/10.1109/ICC.2015.7248785

Niwa, H., Kodaka, K., Sakamoto, Y., Otake, M., Kawaguchi, S., Fujii, K., Kanemori, Y., Sugano, S., 2008. Gps-based indoor positioning system with multichannel pseudolite. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE, pp. 905-910.

Nuaimi, K. A., Ain, A., Ain, A., 2011. A Survey of Indoor Positioning Systems and Algorithms, 185-190.

Popleteev, A., Osmani, V., Mayora, O., 2012. Investigation of indoor localization with ambient FM radio stations. In: 2012 IEEE International Conference on Pervasive Computing and Communications. pp. 19-23. https://doi.org/10.1109/PerCom.2012.6199864

Regula, G., Gozse, I., Soumelidis, A., 2012. Position estimation using novel calibrated indoor positioning system. In: Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International. IEEE, pp. 1142-1147. https://doi.org/10.1109/I2MTC.2012.6229376

Ruiz, D., Garcia, E., Urena, J., Villadangos, J. M., Garcia, J. J., De Marziani, C., 2014. Performance comparison of correlation-based receive filters in an ultrasonic indoor positioning system. In: Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International. IEEE, pp. 1548-1551. https://doi.org/10.1109/I2MTC.2014.6861005

Selmi, I., Vervisch-Picois, A., Gottesman, Y., Samama, N., 2012. Optical and radio calibration of the repealite based indoor positioning system. In: Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on. IEEE, pp. 1-8. https://doi.org/10.1109/IPIN.2012.6418906

Sertthin, C., Tsuji, E., Nakagawa, M., Kuwano, S.,Watanabe, K., 2009. A switching estimated receiver position scheme for visible light based indoor positioning system. In: Wireless Pervasive Computing, 2009. ISWPC 2009. 4th International Symposium on. IEEE, pp. 1-5. https://doi.org/10.1109/ISWPC.2009.4800561

Siller, M., 2016. A Fingerprinting Indoor Localization Algorithm Based Deep Learning. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN). pp. 1006-1011.

Suzuki, A., Iyota, T., Choi, Y., Kubota, Y., Watanabe, K., Yamane, A., 2009. Measurement accuracy on indoor positioning system using spread spectrum ultrasonic waves. In: Autonomous Robots and Agents, 2009. ICARA 2009. 4th International Conference on. IEEE, pp. 294-297. https://doi.org/10.1109/ICARA.2000.4803981

Swangmuang, N., Krishnamurthy, P., 2008. An effective location fingerprint model for wireless indoor localization. Pervasive and Mobile Computing 4 (6), 836-850. URL: http://dx.doi.org/10.1016/j.pmcj.2008.04.005 https://doi.org/10.1016/j.pmcj.2008.04.005

Tian, Y., Denby, B., Pierre, U., 2014. Hybrid Indoor Localization using GSM Fingerprints , Embedded Sensors and a Particle Filter. In: Wireless Communications Systems (ISWCS), 2014 11th International Symposium on. pp. 542-547. https://doi.org/10.1109/ISWCS.2014.6933413

Torteeka, P., Chundi, X., 2014. Indoor positioning based on Wi-Fi Fingerprint Technique using Fuzzy K-Nearest Neighbor. Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, 461-465. https://doi.org/10.1109/IBCAST.2014.6778188

Varshavsky, A., Lara, E. D., Hightower, J., Lamarca, A., Otsason, V., 2007. GSM indoor localization. Pervasive and Mobile Computing 3, 698-720. https://doi.org/10.1016/j.pmcj.2007.07.004

Vervisch-Picois, A., Samama, N., 2012. First experimental performances of the repealite based indoor positioning system. In:Wireless Communication Systems (ISWCS), 2012 International Symposium on. IEEE, pp. 636-640. https://doi.org/10.1109/ISWCS.2012.6328445

Vervisch-Picois, A., Selmi, I., Gottesman, Y., Samama, N., 2010. Current status of the repealite based approach: A sub-meter indoor positioning system. In: Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2010 5th ESAWorkshop on. IEEE, pp. 1-6. https://doi.org/10.1109/NAVITEC.2010.5707994

Wang, X., Gao, L., Mao, S., Pandey, S., 2015. DeepFi : Deep Learning for Indoor Fingerprinting Using Channel State Information. In: Wireless Communications and Networking Conference (WCNC), 2015 IEEE. pp. 9-12.

Wietrzykowski, J., 2017. Low-Effort Place Recognition with WiFi Fingerprints Using Deep Learning. In: Automation 2017. ICA 2017. https://doi.org/10.1007/978-3-319-54042-957

Xia, S., Liu, Y., Yuan, G., Zhu, M.,Wang, Z., 2017. Indoor Fingerprint Positioning Based on Wi-Fi : An Overview. https://doi.org/10.3390/ijgi6050135

Yamaguchi, S., Mai, V. V., Thang, T. C., Pham, A. T., 2014. Design and performance evaluation of vlc indoor positioning system using optical orthogonal codes. In: Communications and Electronics (ICCE), 2014 IEEE Fifth International Conference on. IEEE, pp. 54-59. https://doi.org/10.1109/CCE.2014.6916679

Yazici, A., Yayan, U., Y¨ucel, H., 2011. An ultrasonic based indoor positioning system. In: Innovations in Intelligent Systems and Applications (INISTA), 2011 International Symposium on. IEEE, pp. 585-589. https://doi.org/10.1109/INISTA.2011.5946154

Zhao, J., Wang, J., 2017. WiFi Indoor Positioning Algorithm Based on Machine Learning. In: Electronics Information and Emergency Communication (ICEIEC), 2017 7th IEEE International Conference on. https://doi.org/10.1109/ICEIEC.2017.8076562

Zhuang, Y., Syed, Z., Georgy, J., 2015. Autonomous smartphone based WiFi positioning system by using access points localization and crowdsourcing. Pervasive and Mobile Computing. URL: http://dx.doi.org/10.1016/j.pmcj.2015.02.001 https://doi.org/10.1016/j.pmcj.2015.02.001

Zou, H., Luo, Y., Lu, X., Jiang, H., Xie, L., 2015. A Mutual Information Based Online Access Point Selection Strategy for WiFi Indoor Localization. In: Automation Science and Engineering (CASE), 2015 IEEE International Conference on. pp. 24-28. https://doi.org/10.1109/CoASE.2015.7294059

Ver más Ver menos