Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie

José Omar Hernández-Vázquez, Salvador Hernández-González, José Alfredo Jiménez-García, Manuel Darío Hernández-Ripalda, José Israel Hernández-Vázquez

Resumen

El problema de asignación del buffer (BAP, por sus siglas en inglés) es clasificado como un problema de optimización combinatorio NP-Duro en el diseño de las líneas de producción. Éste consiste en definir la asignación de lugares de almacenamiento (buffers) dentro de una línea de producción, con el fin de aumentar al máximo la eficiencia del proceso.  Los métodos de optimización que han sido reportados con mayor éxito en los últimos años son las técnicas metaheurísticas. En este trabajo, se propone un enfoque híbrido que utiliza las técnicas metaheurísticas de: Algoritmos Genéticos (AG) y Recocido Simulado (RS), con el objetivo de determinar los buffers requeridos que minimicen el promedio de inventario en proceso (WIP, por sus siglas en inglés) en líneas de producción abiertas en serie M/M/1/K. La evaluación se realiza con un método analítico de descomposición. Los resultados obtenidos demuestran la eficiencia computacional del algoritmo híbrido propuesto con respecto a un RS o AG estándar.

Palabras clave

Control de inventario; Optimización y métodos computacionales; BAP; Metaheurísticas híbridas; Líneas de producción

Clasificación por materias

Automatización de sistemas de producción; Modelado, identificación, simulación y optimización de sistemas

Texto completo:

PDF

Referencias

Amiri, M., & Mohtashami, A. (2011). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. International Journal of Advanced Manufacturing Technology, 62, 371-383. https://doi.org/10.1007/s00170-011-3802-8

Ariyani, A. K., Mahmudy, W. F., & Anggodo, Y. P. (2018). Hybrid genetic algorithms and simulated annealing for multi-trip vehicle routing problem with time windows. International Journal of Electrical and Computer Engineering, 8(6), 4713-4723. https://doi.org/10.11591/ijece.v8i6.pp4713-4723

Blum, C., Blesa Aguilera, M. J., Roli, A., & Sampels, M. (2008). Hybrid metaheuristics an emerging approach to optimization, Springer, Berlin. https://doi.org/10.1007/978-3-540-78295-7

Costa, A., Alfieri, A., Matta, A., & Fichera, S. (2015). A parallel tabu search for solving the primal buffer allocation problem in serial production systems. Computers & Operations Research, 97-112. https://doi.org/10.1016/j.cor.2015.05.013

Cruz, F. R., Kendall, G., While, L., Duarte, A. R., & Brito, N. L. (2012). Throughput maximization of queueing networks with simultaneous minimization of servicer rates and buffers. Mathematical Problems in Engineering, 1-19. https://doi.org/10.1155/2012/692593

Curry, G., & Feldman, R. (2009). Manufacturing Systems Modeling and Analysis, Springer, Berlin.

Demir, L., Tunali, S., & Tursel Eliiyi, D. (2014). The state of the art on buffer allocation problem: a comprehensive survey. Journal of Intelligent Manufacturing, 25(3), 371-392. https://doi.org/10.1007/s10845-012-0687-9

Demir, L., & Tunali, S. (2008). A new approach for optimal buffer allocation in unreliable production lines. Pcoceedings of 38th International Conference on Computers, (págs. 1962-1970).

Dolgui, A., Eremeev, A. V., & Sigaev, V. S. (2007). HBBA: hybrid algorithm for buffer allocation in tandem production lines. Journal of Intelligent Manufacturing, 18, 411-420. https://doi.org/10.1007/s10845-007-0030-z

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning (Primera ed.), Addison-Wesley Professional, United States of America.

Gutiérrez Pulido, H., & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos (Tercera ed.), McGraw-Hill, México.

Huilcapi, V., Lima, B., Blasco, X., & Herrero, J. M. (2018). Multi-objective optimization in modeling and control for rotary inverted pendulum. Revista Iberoamericana de Automática e Informática Industrial, 15(4), 363-373. https://doi.org/10.4995/riai.2018.8739

Kose, S. Y., & Kilincci, O. (2015). Hybrid approach for buffer allocation in open serial production lines. Computers & Operations Research, 60, 67-78. https://doi.org/10.1016/j.cor.2015.01.009

Kose, S. Y., & Kilincci, O. (2018). A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1435-6

Liu, C., & Tu, F. S. (1994). Buffer allocation via the genetic algorithm. In: Proceedings of 33rd conference on decision and control, 609-610.

Mohtashami, A. (2014). A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters. International Journal of Advanced Manufacturing Technology, 74, 1577-1593. https://doi.org/10.1007/s00170-014-6098-7

Nahas, N., & Nourelfath, M. (2018). Joint optimization of maintenance, buffers and machines in manufacturing lines. Engineering Optimization, 50(1), 37-54. https://doi.org/10.1080/0305215X.2017.1299716

Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2009). Selecting machines and buffers in unreliable series-parallel production lines. International Journal of Production Research, 47(14), 3741-3774. https://doi.org/10.1080/00207540701806883

Nahas, N., Nourelfath, M., & Gendreau, M. (2014). Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks. International Journal of Production Economics, 154, 113-126. https://doi.org/10.1016/j.ijpe.2014.04.011

Narasimhamu, K. L., Reddy, V. V., & Rao, C. (2014). Optimal buffer allocation in tandem closed queuing network with single server using PSO. Procedia Materials Science, 5, 2084-2089. https://doi.org/10.1016/j.mspro.2014.07.543

Narasimhamu, K. L., Reddy, V. V., & Rao, C. (2015). Optimization of buffer allocation in manufacturing system using particle swarm optimization. International Review on Modelling and Simulations, 8(2). https://doi.org/10.15866/iremos.v8i2.5666

Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., & Castro-Linares, R. (2016). Fractional adaptive control optimized by genetic algorithms, applied to automatic voltage regulators. Revista Iberoamericana de Automática e Informática industrial, 13(4), 403-409. https://doi.org/10.1016/j.riai.2016.07.004

Papadopoulos, C. T., O'Kelly, M. E., Vidalis, M. J., & Spinellis, D. (2009). Analysis and design of discrete part production lines. New York: Springer. https://doi.org/10.1007/978-0-387-89494-2_2

Papadopoulos, H. T., & Vidalis, M. I. (2001). Minimizing WIP inventory in reliable production lines. International Journal of Production Economics, 70, 185-197. https://doi.org/10.1016/S0925-5273(00)00056-6

Rodríguez-Blanco, T., Sarabia, D., & De Prada, C. (2018). Real-time optimization using the modifier adaptation methodology. Revista Iberoamericana de Automática e Informática industrial, 15(2), 133-144. https://doi.org/10.4995/riai.2017.8846

Shi, L., & Men, S. (2003). Optimal buffer allocation in production lines. IIE Transactions, 35, 1-10. https://doi.org/10.1080/07408170304431

Shortle, J., Thompson, J., Gross, D., & Harris, C. (2018). Fundamentals of Queueing Theory (Fifth ed.), Wiley, United States of America. https://doi.org/10.1002/9781119453765

Spinellis, D. D., & Papadopoulos, C. T. (2000a). A simulated annealing approach for buffer allocation in reliable production lines. Annals of Operations Research, 93, 373-384. https://doi.org/10.1023/A:1018984125703

Spinellis, D. D., & Papadopoulos, C. T. (2000b). Stochastic algorithms for buffer allocation in reliable production lines. Mathematical Problems in Engineering, 5, 441-458. https://doi.org/10.1155/S1024123X99001180

Spinellis, D., Papadopoulos, C., & Smith, J. M. (2000). Large production line optimisation using simulated annealing. International Journal of Production Research, 38(3), 509-541. https://doi.org/10.1080/002075400189284

Su, C., Shi, Y., & Dou, J. (2017). Multi-objective optimization of buffer allocation for remanufacturing system based on TS-NSGAII hybrid algorithm. Journal of Cleaner Production, 166, 756-770. https://doi.org/10.1016/j.jclepro.2017.08.064

Takahashi, Y., Miyahara, H., & Hasegawa, T. (1980). An approximation method for open restricted queueing networks. Operations Research, 28(3), 594-602. https://doi.org/10.1287/opre.28.3.594

Vergara, H. A., & Kim, D. S. (2009). A new method for the placement of buffers in serial production lines. International Journal of Production Research, 47(16), 4437-445. https://doi.org/10.1080/00207540801939022

Wei, H., Li, S., Jiang, H., Hu, J., & Hu, J. (2018). Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion. Applied Sciences, 8(2621), 1-20. https://doi.org/10.3390/app8122621

Weiss, S., Schwarz, J. A., & Stolletz, R. (2018). The buffer allocation problem in production lines: Formulations, solution methods, and instances. IISE Transactions. https://doi.org/10.1080/24725854.2018.1442031

Abstract Views

3305
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A Loop Pairing Method for Non-Linear Multivariable Control Systems Under a Multi-Objective Optimization Approach
Victor Huilcapi, Xavier Blasco, Juan Manuel Herrero, Gilberto Reynoso-Meza
IEEE Access  vol: 8  primera página: 41262  año: 2020  
doi: 10.1109/ACCESS.2020.2976774



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912