Integración de REDs en Redes AC: una Familia de Controladores Basados en Pasividad

Autores/as

  • Oscar Danilo Montoya Universidad Tecnológica de Bolívar https://orcid.org/0000-0001-6051-4925
  • Walter Gil-González Universidad Tecnológica de Pereira
  • Sofía Avila-Becerril Universidad Nacional Autónoma de México
  • Alejandro Garces Universidad Tecnológica de Pereira
  • Gerardo Espinosa-Pérez Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.4995/riai.2018.10666

Palabras clave:

Control basado en pasividad, recursos energéticos distribuidos, convertidores controlados por voltaje, redes monofásicas de corriente alterna

Resumen

En este artículo se presenta el diseño y la aplicación de la teoría de control basada en pasividad para la integración de recursos energéticos distribuidos (REDs) a través de convertidores controlados por voltaje en redes monofásicas de corriente alterna. La representación Hamiltoniana de estos sistemas facilita el desarrollo de controladores pasivos que garantizan estabilidad en el sentido de Lyapunov para su operación en lazo cerrado. El modelado dinámico no autónomo de estos sistemas es transformado en un modelo incremental, el cual permite resolver el problema de seguimiento de trayectorias como un problema de regulación. La principal contribución de este trabajo radica en la capacidad de controlar el flujo de potencia activa y reactiva entre los REDs y la red eléctrica en función de la disponibilidad del recurso energético primario y la capacidad de los convertidores. Los resultados de simulación muestran que todos los controladores pasivos propuestos logran el objetivo de control, alcanzando el mismo desempeño dinámico que los controladores proporcionales integrales clásicos, garantizando estabilidad asintótica. Todas las simulaciones son desarrolladas bajo el entorno MATLAB/Simulink a través de la librería SimPowerSystems.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Avila-Becerril, S., Espinosa-Pérez, G., Canseco-Rodal, R., 2017. On the control of power flows in microgrids. In: Decision and Control (CDC), 2017 IEEE 56th Annual Conference on. IEEE, pp. 3252–3257. https://doi.org/10.1109/cdc.2017.8264136

Avila-Becerril, S., Montoya, O. D., Espinosa-Pérez, G., Garcés, A., 2018. Control of a Detailed Model of Microgrids from a Hamiltonian Approach. IFAC-PapersOnLine 51 (3), 187 – 192, 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018. https://doi.org/10.1016/j.ifacol.2018.06.051

Bahrani, B., Rufer, A., Kenzelmann, S., Lopes, L. A. C., March 2011. Vector Control of Single-Phase Voltage-Source Converters Based on Fictive-Axis Emulation. IEEE Trans. Ind. Appl. 47 (2), 831–840. https://doi.org/10.1109/tia.2010.2101992

Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., 2015. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice 43, 109–119. https://doi.org/10.1016/j.conengprac.2015.07.002

Cucuzzella, M., Incremona, G. P., Ferrara, A., 2017. Decentralized sliding mode control of islanded ac microgrids with arbitrary topology. IEEE Transactions on Industrial Electronics 64 (8), 6706–6713. https://doi.org/10.1109/tie.2017.2694346

del Puerto-Flores, D., Scherpen, J. M. A., Liserre, M., de Vries, M. M. J., Kransse, M. J., Monopoli, V. G., July 2014. Passivity-based control by series/parallel damping of single-phase pwm voltage source converter. IEEE Trans. Control Syst. Technol. 22 (4), 1310–1322. https://doi.org/10.1109/tcst.2013.2278781

Gil-González, W. J., Garcés, A., Escobar, A., 2017. A generalized model and control for supermagnetic and supercapacitor energy storage. Ingeniería y Ciencia 13 (26), 147–171.

Jones, P. S., Davidson, C. C., Sept 2013. Calculation of power losses for MMCbased VSC HVDC stations. In: 2013 15th European Conference on Power Electronics and Applications (EPE). pp. 1–10. https://doi.org/10.1109/epe.2013.6631955

Kalla, U. K., Singh, B., Murthy, S. S., Dec 2016. Intelligent Neural Network-Based Controller for Single-Phase Wind Energy Conversion System Using TwoWinding Self-Excited Induction Generator. IEEE Trans. Ind. Inf. 12 (6), 1986–1997. https://doi.org/10.1109/tii.2016.2591881

Khodaei, A., Bahramirad, S., Shahidehpour, M., 2014. Microgrid Planning Under Uncertainty. IEEE Transactions on Power Systems 30 (5), 2417–2425. https://doi.org/10.1109/tpwrs.2014.2361094

Khodaei, A., Shahidehpour, M., 2013. Microgrid-based co-optimization of generation and transmission planning in power systems. IEEE Transactions on Power Systems 28 (2), 1582–1590. https://doi.org/10.1109/tpwrs.2012.2224676

Martínez-Pérez, I., Espinosa-Perez, G., Sandoval-Rodríguez, G., Dòria-Cerezo, A., 2008. IDA Passivity-Based Control of single phase back-to-back converters. IEEE International Symposium on Industrial Electronics (2), 74–79. https://doi.org/10.1109/isie.2008.4677270

Montoya, O. D., Garces, A., Serra, F. M., Magaldi, G., Feb 2018a. Apparent power control in single-phase grids using sces devices: An ida-pbc approach. In: 2018 IEEE 9th Latin American Symposium on Circuits Systems (LASCAS). pp. 1–4. https://doi.org/10.1109/lascas.2018.8399963

Montoya, O. D., Garcés, A., Espinosa-Pérez, G., 2018b. A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems. Journal of Energy Storage 16, 259 – 268. https://doi.org/10.1016/j.est.2018.01.018

Montoya, O. D., Garcés, A., Serra, F. M., 2018c. DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators. Journal of Energy Storage 16, 250 – 258. https://doi.org/10.1016/j.est.2018.01.014

Montoya, O. D., Gil-González, W., Serra, F. M., 2018d. PBC Approach for SMES Devices in Electric Distribution Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 1–1. https://doi.org/10.1109/tcsii.2018.2805774

Montoya, O. D., Grajales, A., Garces, A., Castro, C. A., May 2017. Distribution systems operation considering energy storage devices and distributed generation. IEEE Latin America Transactions 15 (5), 890–900. https://doi.org/10.1109/tla.2017.7910203

Ortega, A., Milano, F., Sept 2016. Generalized model of vsc-based energy storage systems for transient stability analysis. IEEE Trans. Power Syst. 31 (5), 3369–3380. https://doi.org/10.1109/tpwrs.2015.2496217

Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., 2015. State of the art in research on microgrids: A review. IEEE Access 3, 890–925. https://doi.org/10.1109/access.2015.2443119

Perez, M., Ortega, R., Espinoza, J. R., Nov 2004. Passivity-based PI control of switched power converters. IEEE Trans. Control Syst. Technol. 12 (6), 881–890. https://doi.org/10.1109/tcst.2004.833628

Perko, L., 2013. Differential Equations and Dynamical Systems. Texts in Applied Mathematics. Springer New York. URL https://books.google.com.co/books?id=VFnSBwAAQBAJ

Rezaei, M. M., Soltani, J., 2015. A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions. International Journal of Electrical Power & Energy Systems 71, 68 – 76. https://doi.org/10.1016/j.ijepes.2015.02.041

Serra, F. M., Angelo, C. H. D., 2017. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electr. Power Syst. Res. 142, 12 – 19. https://doi.org/10.1016/j.epsr.2016.08.041

Tenfen, D., Finardi, E. C., 2015. A mixed integer linear programming model for the energy management problem of microgrids. Electric Power Systems Research 122, 19–28. https://doi.org/10.1016/j.epsr.2014.12.019

Vasquez, J. C., Guerrero, J. M., Miret, J., Castilla, M., Vicuña, L. G. D., 2010. Hierarchical Control of Intelligent Microgrids. IEEE Industrial Electronics Magazine (December 2010), 23–29. https://doi.org/10.1109/mie.2010.938720

Descargas

Publicado

20-03-2019

Cómo citar

Montoya, O. D., Gil-González, W., Avila-Becerril, S., Garces, A. y Espinosa-Pérez, G. (2019) «Integración de REDs en Redes AC: una Familia de Controladores Basados en Pasividad», Revista Iberoamericana de Automática e Informática industrial, 16(2), pp. 212–221. doi: 10.4995/riai.2018.10666.

Número

Sección

Artículos