Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros

F.J. Gómez, L.J. Yebra, A. Giménez, J.L. Torres-Moreno

Resumen

En este artículo se propone un modelo dinámico de batería que permite simular el comportamiento de distintos tipos de baterías para su aplicación en vehículos eléctricos urbanos ligeros. El modelo es fácilmente parametrizable a partir de las curvas de descarga experimentales del equipo real y se ajusta adecuadamente al comportamiento particular de la curva de carga/descarga de las baterías de Litio-Ferrofosfato (LiFePo4). Se han utilizado los datos obtenidos sobre una instalación experimental para la calibración del modelo propuesto y se presentan resultados de la validación del mismo. El modelo se ha implementado en el lenguaje de modelado orientado a objetos Modelica reutilizando clases de su librería estándar Modelica Standard Library. La calibración y validación se ha realizado con la herramienta de modelado Dymola.


Palabras clave

Lenguajes de simulación; Modelado de sistemas de eventos discretos e híbridos; Simulación de sistemas; Gestión energética y de almacenamiento de energía en vehículos; Identificación de sistemas y estimación de parámetros

Clasificación por materias

Modelado, identificación, simulación y optimización de sistemas; Control de sistemas de transporte y vehículos

Texto completo:

PDF

Referencias

A123 Systems, 2012. Nanophosphate High Power Lithium Ion Cell ANR26650M1-B.

Ahmed, M., 2016. Modeling Lithium-ion Battery Chargers in PLECS R . Tech.rep.

Ansean, D., Gonzalez, M., Viera, J. C., Alvarez, J. C., Blanco, C., García, V. M., 2013. Evaluation of LiFePO4batteries for Electric Vehicle applications. In: 2013 Int. Conf. New Concepts Smart Cities Foster. Public Priv. Alliances. IEEE, Gijon, Spain, p. 8. URL: https://ieeexplore.ieee.org/document/6708211 http://doi.org/10.1109/SmartMILE.2013.6708211

Berecibar, M., Garmendia, M., Gandiaga, I., Crego, J., Villarreal, I., 2016. State of health estimation algorithm of LiFePO4battery packs based on differential voltage curves for battery management system application. Energy 103, 784-796. https://doi.org/10.1016/j.energy.2016.02.163

Brondani, M. D. F., Sausen, A. T. Z. R., Sausen, P. S., Binelo, M. O., 2017. Battery Model Parameters Estimation Using Simulated Annealing. TEMA(Sao Carlos) 18 (1), 127. URL: https://tema.sbmac.org.br/tema/article/view/1003 https://doi.org/10.5540/tema.2017.018.01.0127

Dempsey, M., Gäfvert, M., Harman, P., Kral, C., Otter, M., Treffinger, P., 2006. Coordinated automotive libraries for vehicle system modelling. In: 5thModel. Conf. 2006. The Modelica Association, Vienna, Austria, pp. 33-41.URL: https://www.modelica.org/events/modelica2006/Proceedings/sessions/Session1b2.pdf

Dizqah,A.M.,Busawon,K.,Fritzson,P.,2012.ACAUSALMODELINGAND SIMULATION OF THE STANDALONE SOLAR POWER SYSTEMS AS HYBRID DAEs. In: 53rd Int. Conf. Scand. Simul. Soc. pp. 1-7.

Dymola - Dynamic Modeling Laboratory - User Manual, 2018. Dymola. URL: http://www.dymola.com

Elmqvist, H., Olsson, H., Mattsson, S. E., Brück, D., Schweiger, C., Joos, D., Otter, M., 2005. Optimization for design and parameter estimation. In: In4th International Modelica Conference.

Fritzson, P., 2015. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd Edition. Wiley. https://doi.org/10.1002/9781118989166

Gómez, F.J., Yebra, L.J., Giménez, A., 2018. Modelling a Smart-Grid for a Solar Powered Electric Vehicle. In: Technische Universität Wien (Ed.), 9th Vienna Conf. Math. Model. Vol. 55. ARGESIM Publisher, Vienna, Vienna,Austria, pp. 5-6. URL: https://www.asim-gi.org/fileadmin/user_upload_argesim/ARGESIM_Publications_OA/MATHMOD_Publications_OA/MATHMOD_2018_AR55/articles/a55113.arep.55.pdf DOI: 10.11128/arep.55.a55113. https://doi.org/10.11128/arep.55.a55113

Hausmann, A., Depcik, C., 2013. Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J. Power Sources 235, 148–158. URL: https://www.sciencedirect.com/science/article/pii/S0378775313002322. https://doi.org/10.1016/j.jpowsour.2013.01.174

Kroeze, R. C., Krein, P. T., 2008. Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electron. Spec. Conf. IEEE, Rhodes, Greece, pp. 1336–1342. URL: http://ieeexplore.ieee.org/document/4592119/. https://doi.org/10.1109/PESC.2008.4592119

NREL, 2015. Technoeconomic Modeling of Battery Energy Storage in SAM. Tech. Rep.September.URL: http://www.nrel.gov/docs/fy15osti/64641.pdf

Olsson, H., Mattsson, S. E., Hilding Elmqvist, 2006. Calibration of Static Models using Dymola. In: Proc. 5th Int. Model. Conf. The Modelica Association (http://www.modelica.org/) and Arsenal Research (http://www.arsenal.ac.at/), Vienna, Austria, pp. 615-620.URL: https://modelica.org/events/modelica2006/Proceedings/sessions/Session6a3.pdf

Petzl, M., Danzer, M. A., 2013. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans. Energy Convers. 28 (3), 675-681. https://doi.org/10.1109/TEC.2013.2259490

Seaman, A., Dao, T.-S., McPhee, J., jun 2014. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 256, 410–423. URL: https://www.sciencedirect.com/science/article/pii/S0378775314000810. https://doi.org/10.1016/j.jpowsour.2014.01.057

Torres-Moreno, J. L., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with pv-battery systemsand electric vehicles. Energies 11 (3). URL: http://www.mdpi.com/1996-1073/11/3/522 DOI: 10.3390/en11030522. https://doi.org/10.3390/en11030522

Tremblay, O., Dessaint, L., 2009. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 3, 1-10. https://doi.org/10.3390/wevj3020289

TÜV SÜD Certification and Testing (China) Co. Ltd., 2016. Test Report IEC-62619A BYD B-Box. Tech. rep., TÜV SÜD Certification and Testing (China) Co. Ltd., Shenzhen (China). URL: https://www1.fenecon.de/web/content/34638

van Baten, J., 2017. ScanIt. URL: https://www.amsterchem.com/scanit.html

Wang, W., Chung, H. S. H., Zhang, J., 2014. Near-real-time parameter estimation of an electrical battery model with multiple time constants and SoCdependent capacitance. 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014 29 (11), 3977–3984. URL: https://ieeexplore.ieee.org/document/6714474. https://doi.org/10.1109/ECCE.2014.6953942

Zambrano Bigiarini, M., 2017. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. URL: http://hzambran.github.io/hydroGOF/

Zhang, W.-J., mar 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196 (6), 2962–2970. URL: https://www.sciencedirect.com/science/article/pii/S037877531002104X{#}bib0005. https://doi.org/10.1016/j.jpowsour.2010.11.113

Abstract Views

2685
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Mechatronic Modelling of Industrial AGVs: A Complex System Architecture
J. Enrique Sierra-García, Matilde Santos, Aydin Azizi
Complexity  vol: 2020  primera página: 1  año: 2020  
doi: 10.1155/2020/6687816



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912