Análisis y Diseño de Sistemas Lineales con Parámetros Variantes Utilizando LMIs
DOI:
https://doi.org/10.4995/riai.2018.10436Palabras clave:
Sistemas lineales, análisis de estabilidad, análisis de prestaciones, desigualdades matriciales lineales (LMIs), sistemas lineales de parámetros variantes (LPV)Resumen
En este artículo se presenta un tutorial sobre análisis y diseño de sistemas lineales con parámetros variantes (LPV) utilizando las desigualdades lineales matriciales (LMIs). Varias especificaciones, tales como la D-estabilidad, el desempeño H∞ garantizado y el coste cuadrático garantizado, así como también diferentes estructuras de control, tales como el control por realimentación de estado, el control por realimentación de salida y el control basado en observador, han sido consideradas. Para ilustrar de forma didáctica el desarrollo completo del diseño mediante LMIs, se utilizan un ejemplo numérico y un modelo simplificado de un helicóptero de dos grados de libertad (TRMS).
Descargas
Citas
Abdullah, A., Zribi, M., 2009. Model reference control of LPV systems. Journal of the Franklin Institute 346 (9), 854–871. https://doi.org/10.1016/j.jfranklin.2009.04.006
Ali, M., Abbas, H., Werner, H., 2010. Controller synthesis for input-output LPV https://doi.org/10.1109/CDC.2010.5717576
Amato, F., 2006. Quadratic stability. In: Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters. Springer, pp. 31–92. https://doi.org/10.1007/3-540-33276-6_3
Andújar, J. M., Barragán, A. J., 2014. Hibridación de sistemas borrosos para el modelado y control. Revista Iberoamericana de Automática e Informática Industrial RIAI 11 (2), 127–141. https://doi.org/10.1016/j.riai.2014.03.004
Apkarian, P., Gahinet, P., Becker, G., 1995. Self-scheduled H∞ control of linear parameter-varying systems: a design example. Automatica 31 (9), 1251–1261. https://doi.org/10.1016/0005-1098(95)00038-X
Ariño, C., Sala, A., 2007. Relaxed LMI conditions for closed-loop fuzzy systems with tensor-product structure. Engineering Applications of Artificial Intelligence 20 (8), 1036–1046. https://doi.org/10.1016/j.engappai.2007.02.011
Ariño, C., Sala, A., Pérez, E., Bedate, F., Querol, A., 2017. Asymptotically exact stabilisation for constrained discrete Takagi–Sugeno systems via set-invariance. Fuzzy Sets and Systems 316, 117–138. https://doi.org/10.1016/j.fss.2016.10.004
Barragán, A. J., Al-Hadithi, B. M., Andújar, J. M., Jiménez, A., 2015. Metodología formal de análisis del comportamiento dinámico de sistemas no lineales mediante lógica borrosa. Revista Iberoamericana de Automática e Informática Industrial RIAI 12 (4), 434–445. https://doi.org/10.1016/j.riai.2015.09.005
Bernal, M., Guerra, T. M., 2010. Generalized nonquadratic stability of continuous-time Takagi–Sugeno models. IEEE Transactions on Fuzzy Systems 18 (4), 815–822. https://doi.org/10.1109/TFUZZ.2010.2049113
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Jun. 1994. Linear Matrix Inequalities in System and Control Theory. Vol. 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA.
Briat, C., 2015. Stability analysis and control of a class of LPV systems with piecewise constant parameters. Systems & Control Letters 82, 10–17. https://doi.org/10.1016/j.sysconle.2015.05.002
Brizuela-Mendoza, J., Astorga-Zaragoza, C., Zavala-Río, A., Canales-Abarca, F., 2016. Control tolerante a fallas activo: Estimación y acomodación de fallas en sensores aplicado al modelo LPV de una bicicleta sin conductor. Revista Iberoamericana de Automática e Informática Industrial RIAI 13 (2),174–185. https://doi.org/10.1016/j.riai.2016.01.001
Bruzelius, F., Pettersson, S., Breitholtz, C., 2003a. Induced l2-gain domain for LPV-gain scheduled control systems. In: IEEE Mediterranean Conference on Control and Automation.
Bruzelius, F., Pettersson, S., Breitholtz, C., 2003b. Region of attraction estimates for LPV-gain scheduled control systems. In: European Control Conference (ECC), 2003. IEEE, pp. 892–897. https://doi.org/10.23919/ECC.2003.7085071
Carrillo-Ahumada, J., Reynoso-Meza, G., García-Nieto, S., Sanchis, J., García-Alvarado, M., 2015. Sintonización de controladores pareto-óptimo robustos para sistemas multivariables. aplicación en un helicóptero de 2 grados de libertad. Revista Iberoamericana de Automática e Informática Industrial RIAI12 (2), 177–188. https://doi.org/10.1016/j.riai.2015.03.002
Chilali, M., Gahinet, P., 1996.H1design with pole placement constraints: an LMI approach. IEEE Transactions on automatic control 41 (3), 358–367. https://doi.org/10.1109/9.486637
Chilali, M., Gahinet, P., Apkarian, P., 1999. Robust pole placement in LMI regions. IEEE Transactions on Automatic Control 44 (12), 2257–2270. https://doi.org/10.1109/9.811208
Daafouz, J., Bernussou, J., Geromel, J. C., 2008. On inexact LPV control design of continuous–time polytopic systems. IEEE Transactions on Automatic Control 53 (7), 1674–1678. https://doi.org/10.1109/TAC.2008.928119
Duan, G.-R., Yu, H.-H., 2013. LMIs in control systems: analysis, design and applications. CRC press.
El Ghaoui, L., Niculescu, S.-l., 2000. Advances in linear matrix inequality methods in control. SIAM. https://doi.org/10.1137/1.9780898719833
Fernández, A. S., Ruiz, J. J., 1991. Algoritmo del elipsoide interior para programación lineal. Qüestiió: quaderns d'estadística i investigació operativa15 (1).
Gahinet, P., Apkarian, P., Chilali, M., 1996. Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Transactions on Automatic control 41 (3), 436–442. https://doi.org/10.1109/9.486646
Gahinet, P., Nemirovskii, A., 1993. General-purpose LMI solvers with benchmarks. In: Decision and Control, 1993, Proceedings of the 32nd IEEE Conference on. IEEE, pp. 3162–3165. https://doi.org/10.1109/CDC.1993.325785
Ghersin, A. S., Pe-a, R. S., 2002. LPV control of a 6-DOF vehicle. IEEE Transactions on Control Systems Technology 10 (6), 883–887. https://doi.org/10.1109/TCST.2002.804123
Ghersin, A. S., Pe-a, R. S. S., 2010. Applied LPV control with full block multipliers and regional pole placement. Journal of Control Science and Engineering 2010, 3. https://doi.org/10.1155/2010/463709
Goebel, R., Hu, T., Teel, A. R., 2006. Dual matrix inequalities in stability and performance analysis of linear dierential/dierence inclusions. In: Current trends in nonlinear systems and control. Springer, pp. 103–122. https://doi.org/10.1007/0-8176-4470-9_6
Gordillo Álvarez, F., 2009. Estabilidad de sistemas no lineales basada en la teoría de Liapunov. Revista Iberoamericana de Automática e Informática Industrial RIAI 6 (2), 5–16. https://doi.org/10.1016/S1697-7912(09)70088-3
Guerra, T. M., Sala, A., Tanaka, K., 2015. Fuzzy control turns 50: 10 years later. Fuzzy sets and systems 281, 168–182. https://doi.org/10.1016/j.fss.2015.05.005
Guo, L., Wang, H., 2010. Stochastic distribution control system design: a convex optimization approach. Springer Science & Business Media. https://doi.org/10.1007/978-1-84996-030-4
Heemels, W. M. H., Daafouz, J., Millerioux, G., 2010. Observer-based control of discrete-time lpv systems with uncertain parameters. IEEE transactions on automatic control 55 (9), 2130–2135. https://doi.org/10.1109/TAC.2010.2051072
Hoffmann, C., Werner, H., 2015. A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Transactions on Control Systems Technology 23 (2), 416–433.Horn, R. A., Horn, R. A., Johnson, C. R., 1990. Matrix analysis. Cambridge university press.
Isidori, A., Astolfi, A., 1992. Disturbance attenuation and H∞-control via measurement feedback in nonlinear systems. IEEE transactions on automatic control 37 (9), 1283–1293. https://doi.org/10.1109/9.159566
Kose, I. E., Jabbari, F., 1999. Control of lpv systems with partly measured parameters. IEEE Transactions on Automatic Control 44 (3), 658–663. https://doi.org/10.1109/9.751371
Kruszewski, A., Sala, A., Guerra, T. M., Ari-o, C., 2009. A triangulation approach to asymptotically exact conditions for fuzzy summations. IEEE Transactions on Fuzzy Systems 17 (5), 985–994. https://doi.org/10.1109/TFUZZ.2009.2019124
Kwiatkowski, A., Boll, M.-T., Werner, H., 2006. Automated generation and assessment of affine LPV models. In: Decision and Control, 2006 45th IEEE Conference on. IEEE, pp. 6690–6695. https://doi.org/10.1109/CDC.2006.377768
Kwiatkowski, A., Werner, H., 2008. PCA-based parameter set mappings for LPV models with fewer parameters and less over bounding. IEEE Transactions on Control Systems Technology 4 (16), 781–788. https://doi.org/10.1109/TCST.2007.903094
Lofberg, J., 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. In: Computer Aided Control Systems Design, 2004 IEEE International Symposium on. IEEE, pp. 284–289. https://doi.org/10.1109/CACSD.2004.1393890
López-Estrada, F.-R., Ponsart, J.-C., Astorga-Zaragoza, C.-M., Camas-Anzueto, J.-L., Theilliol, D., 2015. Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor. International Journal of Applied Mathematics and Computer Science 25 (2), 233–244. https://doi.org/10.1515/amcs-2015-0018
Lu, B., Wu, F., 2004. Switching LPV control designs using multiple parameter-dependent Lyapunov functions. Automatica 40 (11), 1973–1980. https://doi.org/10.1016/j.automatica.2004.06.011
Mohammadpour, J., Scherer, C. W., 2012. Control of linear parameter varying systems with applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-1833-7
Nesterov, Y., Nemirovskii, A., 1994. Interior-point polynomial algorithms in convex programming. SIAM. https://doi.org/10.1137/1.9781611970791
Ostertag, E., 2011. Mono-and multivariable control and estimation: linear, quadratic and LMI methods. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-13734-1
Pandey, A., Sehr, M., de Oliveira, M., 2016. Pre-filtering in gain-scheduled and robust control. In: American Control Conference (ACC), 2016. IEEE, pp.3698–3703. https://doi.org/10.1109/ACC.2016.7525488
Pitarch, J., Sala, A., Ari-no, C., Bedate, F., 2012. Estimación del dominio de atracción de sistemas no lineales mediante modelos borrosos polinomiales. Revista Iberoamericana de Automática e Informática industrial 9 (2), 152–161. https://doi.org/10.1016/j.riai.2012.02.007
Pitarch, J. L., Sala, A., Ari-o, C., 2014. Polynomial fuzzy systems: Stability and control. In: Fuzzy Modeling and Control: Theory and Applications. Springer, pp. 95–115.
Prajna, S., Papachristodoulou, A., Parrilo, P. A., 2004. SOSTOOLS: sum of squares optimization toolbox for MATLAB - user's guide.
Rascón, R., Álvarez, J., Aguilar, L. T., 2014. Control robusto de posición para un sistema mecánico subactuado con fricción y holgura elástica. Revista iberoamericana de automática e informática industrial (RIAI) 11 (3), 275–284.
Rotondo, D., 2017. Advances in gain-scheduling and fault tolerant control techniques. Springer.
Rotondo, D., Nejjari, F., Puig, V., 2013. Quasi-LPV modeling, identification and control of a twin rotor mimo system. Control Engineering Practice 21 (6), 829–846. https://doi.org/10.1016/j.conengprac.2013.02.004
Rotondo, D., Nejjari, F., Puig, V., 2014. Robust state-feedback control of uncertain LPV systems: An LMI-based approach. Journal of the Franklin Institute351 (5), 2781–2803. https://doi.org/10.1016/j.jfranklin.2014.01.018
Rotondo, D., Nejjari, F., Puig, V., 2015a. Design of parameter-scheduled state-feedback controllers using shifting specifications. Journal of the Franklin Institute 352 (1), 93–116. https://doi.org/10.1016/j.jfranklin.2014.10.015
Rotondo, D., Puig, V., Nejjari, F., 2015b. Linear quadratic control of LPV systems using static and shifting specifications. In: Control Conference (ECC), 2015 European. IEEE, pp. 3085–3090. https://doi.org/10.1109/ECC.2015.7331007
Rotondo, D., Puig, V., Nejjari, F., 2016. On the analogies in control design of non-linear systems using LPV and Takagi-Sugeno models. In: Systems and Control (ICSC), 2016 5th International Conference on. IEEE, pp. 225–230. https://doi.org/10.1109/ICoSC.2016.7507072
Rotondo, D., Puig, V., Nejjari, F., Romera, J., 2015c. A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Transactions on Industrial Electronics 62 (6), 3932–3944.
Rotondo, D., Puig, V., Nejjari, F., Witczak, M., 2015d. Automated generation and comparison of Takagi–Sugeno and polytopic quasi-LPV models. Fuzzy Sets and Systems 277, 44–64. https://doi.org/10.1016/j.fss.2015.02.002
Sala, A., 2009. On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annual Reviews in Control 33 (1), 48–58. https://doi.org/10.1016/j.arcontrol.2009.02.001
Sala, A., Ari-o, C., 2008. Relaxed stability and performance LMI conditions for Takagi–Sugeno fuzzy systems with polynomial constraints on membership function shapes. IEEE Transactions on Fuzzy Systems 16 (5), 1328–1336. https://doi.org/10.1109/TFUZZ.2008.926585
Sala, A., Ari-o, C., 2007. Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem. Fuzzy Sets and Systems 158 (24), 2671–2686. https://doi.org/10.1016/j.fss.2007.06.016
Sala, A., Ari-o, C., 2009. Reduciendo distancias entre el control borroso y el control no lineal: luces y sombras. Revista Iberoamericana de Automática e Informática Industrial 6 (2), 26–35. https://doi.org/10.1016/S1697-7912(09)70090-1
Scherer, C. W., 1998. Robust performance analysis for parameter dependent systems using tensor product splines. In: Decision and Control, 1998. Proceedings of the 37th IEEE Conference on. Vol. 2. IEEE, pp. 2216–2221. https://doi.org/10.1109/CDC.1998.758672
Scherer, C. W., 2001. LPV control and full block multipliers. Automatica37 (3), 361–375.
Sehr, M. A., de Oliveira, M. C., 2017. Pre-filtering and post-filtering in gain-scheduled output-feedback h∞ control. International Journal of Robust and Nonlinear Control 27 (16), 3259–3279. https://doi.org/10.1002/rnc.3738
Shamma, J. S., 1988. Analysis and design of gain scheduled control systems. Ph.D. thesis, Massachusetts Institute of Technology.
Shamma, J. S., 2012. An overview of LPV systems. In: Control of linear para-meter varying systems with applications. Springer, pp. 3–26. https://doi.org/10.1007/978-1-4614-1833-7_1
Song, B., Hedrick, J. K., 2011. Dynamic surface control of uncertain nonlinear systems: an LMI approach. Springer Science & Business Media. https://doi.org/10.1007/978-0-85729-632-0
Sturm, J. F., 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software 11 (1-4), 625–653. https://doi.org/10.1080/10556789908805766
Sznaier, M., Mazzaro, M. C., 2003. An LMI approach to control-oriented identification and model (in) validation of LPV systems. IEEE Transactions on Automatic Control 48 (9), 1619–1624. https://doi.org/10.1109/TAC.2003.817001
Takagi, T., Sugeno, M., 1993. Fuzzy identification of systems and its applications to modeling and control. In: Readings in Fuzzy Sets for Intelligent Systems. Elsevier, pp. 387–403. https://doi.org/10.1016/B978-1-4832-1450-4.50045-6
Tanaka, K., Taniguchi, T., Wang, H. O., 2000. Generalized Takagi-Sugeno fuzzy systems: rule reduction and robust control. In: Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth IEEE International Conference on. Vol. 2. IEEE, pp. 688–693. https://doi.org/10.1109/FUZZY.2000.839104
Tanaka, K., Wang, H. O., 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley-Interscience. https://doi.org/10.1002/0471224596
Toh, K.-C., Todd, M. J., Tutuncu, R. H., 1999. SDPT3 - a MATLAB software package for semidefinite programming, version 1.3. Optimization methods and software 11 (1-4), 545–581. https://doi.org/10.1080/10556789908805762
Trofino, A., de Souza, C., et al., 2001. Biquadratic stability of uncertain linear systems. IEEE Transactions on Automatic Control 46 (8), 1303–1307. https://doi.org/10.1109/9.940939
Tuan, H. D., Apkarian, P., Narikiyo, T., Yamamoto, Y., 2001. Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on fuzzy systems 9 (2), 324–332. https://doi.org/10.1109/91.919253
Tudon-Martınez, J., Varrier, S., Morales-Menendez, R., Sename, O., 2016. Control tolerante a fallas en una suspensión automotriz semi-activa. Revista Iberoamericana de Automatica e Informatica Industrial 13 (1), 56–66. https://doi.org/10.1016/j.riai.2015.02.009
Veenman, J., Scherer, C. W., 2014. A synthesis framework for robust gain-scheduling controllers. Automatica 50 (11), 2799–2812. https://doi.org/10.1016/j.automatica.2014.10.002
Villafuerte, R., Melo, J. O., 2015. Dise-o y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial. Revista Iberoamericana de Automática e Informática industrial 12 (4), 467–475. https://doi.org/10.1016/j.riai.2015.07.005
White, A. P., Zhu, G., Choi, J., 2013. Linear parameter-varying control for engineering applications. Springer. https://doi.org/10.1007/978-1-4471-5040-4
Witczak, M., Puig, V., Rotondo, D., Witczak, P., 2017. A necessary and sufficient condition for total observability of discrete-time linear time-varying systems. IFAC-PapersOnLine 50 (1), 729–734. https://doi.org/10.1016/j.ifacol.2017.08.232
Witczak, M., Rotondo, D., Puig, V., Witczak, P., 2015. A practical test for assessing the reachability of discrete-time Takagi–Sugeno fuzzy systems. Journal of the Franklin Institute 352 (12), 5936–5951. https://doi.org/10.1016/j.jfranklin.2015.10.006
Wu, F., Dong, K., 2006. Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions. Automatica 42 (1), 39–50. https://doi.org/10.1016/j.automatica.2005.08.020
Wu, F., Prajna, S., 2005. SOS-based solution approach to polynomial LPV sys-tem analysis and synthesis problems. International Journal of Control 78 (8), 600–611. https://doi.org/10.1080/00207170500114865
Wu, F., Yang, X. H., Packard, A., Becker, G., et al., 1996. Inducedl2-norm control for LPV systems with bounded parameter variation rates. International Journal of Robust and Nonlinear Control 6 (9), 983–998. https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
Zhou, K., Khargonekar, P. P., 1988. Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Systems & Control Letters 10 (1), 17–20. https://doi.org/10.1016/0167-6911(88)90034-5
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)