Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo

Manuel A Duarte-Mermoud, Freddy Milla

Resumen

Se propone un estabilizador de potencia predictivo para amortiguar oscilaciones de potencia en un sistema eléctrico de potencia(SEP) formado por una sola máquina conectada a una barra infinita (Single Machine Infinite Bus, SMIB). Este enfoque considera un análisis de estabilidad de pequeña señal, usando un modelo incremental alrededor de un punto de operación. El estabilizador proporciona señales de control óptimas, debido a que además de utilizar el controlador predictivo basado en modelo (Model
Predictive Controller, MPC) sus parámetros se optimizan fuera de línea empleando un algoritmo de optimización por enjambre de partículas (Particle Swarm Optimization, PSO). Su comportamiento se compara con un estabilizador del sistema potencia convencional, con parámetros también optimizados con PSO fuera de línea. Para validar la metodología propuesta, se presentan numerosas simulaciones de respuestas dinámicas del SMIB, para diferentes condiciones de operación y perturbaciones.


Palabras clave

Sistemas eléctricos y electrónicos de potencia; Estabilizador de sistemas de potencia (PSS); Estabilizador predictivo de sistemas de potencia (PPSS); Control predictivo basado en modelo (MPC); Optimización por enjambre de partículas (PSO); Simulación

Clasificación por materias

Control de procesos industriales, sistemas energéticos, mineros, ingeniería civil y edificios

Texto completo:

PDF

Referencias

Abido. M.A., 2002. Optimal design of power-system stabilizers using

particle swarm optimization, IEEE Transactions on Energy Conversion,

vol. 17 (3), pp. 406 – 413.

Bratton, D., Kennedy, J., 2007. Defining a standard for particle swarm

optimization, Proceedings of the IEEE Swarm Intelligence Symposium,

Honolulu, USA, pp. 120–127.

Camacho, E.F., Bordons, C., 2007. Model Predictive Control. Springer-

Verlag, 2 Ed.

Carlisle, A., Dozier, G., 2001. An off-the-shelf PSO. In Proceedings of the.

Particle Swarm Optimization Workshop, Seoul, Korea, pp. 1– 6.

Cazzaniga, P., Nobile, M.S., Besozzi. D., 2015. The impact of particles

initialization in PSO: parameter estimation as a case in point.

Proceedings of IEEE Conference on Computational Intelligence in

Bioinformatics and Computational Biology, Niagara Falls, Canada, pp.

-8.

Chatterjee, A., Ghoshal. S.P., Mukherjee. V., 2011. Chaotic ant swarm

optimization for fuzzy-based tuning of power system stabilizer.

Electrical Power and Energy Systems, vol. 33 pp. 657–672.

Clerc, M., The swarm and the queen: Towards a deterministic and adaptive

particle swarm optimization, in Proc. 1999 ICEC, Washington, DC, pp.

-1957.

Clerc, M., Kennedy, J., 2002. The particle swarm – Explosion, stability,

and convergence in a multidimensional complex space”, IEEE

Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73.

Del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I.

(Eds.), 2010. Automotive Model Predictive Control: Models, Methods

and Applications. Springer-Verlag.

Duarte-Mermoud, M.A., Milla, F., 2016. Model Predictive Power Stabilizer

Optimized by PSO. Proceedings of IEEE ICA Conference & XXII

Congress of ACCA, 19-21 October, 2016, Curicó, Chile. Vol. 1, pp.

-679.

Eberhart, R., Kennedy, J., 1995a. A new optimiser using particle swarm

theory. In: In Proceedings of the Sixth International Symposium on

Micromachine and Human Science (MHS). Nagoya, Japan, pp. 39 – 43.

Eberhart, R., Kennedy, J., 1995b. Particle swarm optimization. In

Proceedings of IEEE International Conference on Neural Networks

(ICNN). Vol. 4. Piscataway, NJ, pp. 1942 – 1948.

Eberhart, R.C., Shi, Y. 2000. Comparing Inertia Weights and Constriction

Factors in Particle Swarm Optimization, In Proceedings of the 2000

Congress on Evolutionary Computing, Vol. 1, pp. 84-88, 2000.

Ford, J.J., Ledwich, G., Dong, Z.Y., 2008. Efficient and robust model

predictive control for first swing transient stability of power systems

using flexible AC transmission systems devices, Generation,

Transmission & Distribution, IET, vol. 2 (5), pp.731-742.

IEEE, 2005. IEEE 421.5. “IEEE Recommended Practice for Excitation

System Models for Power System Stability Studies”. IEEE-SA

Standards. USA.

Kahl, M., Leibfried T., 2013. Decentralized Model Predictive Control of

Electrical Power Systems. In Conference on Power Systems Transients

(IPST2013) in Vancouver, Canada, Available:

http://ipstconf.org/papers/Proc_IPST2013/13IPST043.pdf

Karnik, S.R., Raju, A.B., Raviprakasha, M.S., 2009. Robust Design of

Power System Stabilizer using Taguchi Technique and Particle Swarm

Optimization, in Second International Conference on Emerging Trends

in Engineering and Technology, Nagpur, India, vol. 1, No. 1, pp. 19-25.

Kennedy J., and Eberhart. R.C., 2001. Swarm Intelligence. Morgan

Kaufmann.

Kundur P., 1994. Power system stability and control. New York: McGraw-

Hill.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert. P.O.M., 2000. Constrained

model predictive control: stability and optimality. In Automatica,

vol.36, pp.789–814.

Milla, F., Duarte-Mermoud, M.A., 2016. Predictive Optimized Adaptive

PSS in a Single Machine Infinite Bus. ISA Transactions. vol. 63, pp.

– 327.

Ocampo-Martínez C., 2010. Model Predictive Control of Wastewater

Systems. Springer-Verlag.

Phulpin, Y., Hazra, J., Ernst, D., 2011. Model predictive control of HVDC

power flow to improve transient stability in power systems. In IEEE

International Conference on Smart Grid Communications

(SmartGridComm), Brussels, pp. 593 – 598.

Rajkumar, V., Mohler, R.R., 1994. Nonlinear predictive control for the

damping of multimachine power system transients using FACTS

devices, In Proceedings of the 33rd Conference on Decision and

Control, Lake Buena Vista, Florida, USA, vol. 4. pp. 4074 – 4079.

Sebaa, K., Moulahoum, S., Houassine H., and Kabache,, N. 2012. Model

Predictive Control to improve the power system stability. In 13th

International Conference on Optimization of Electrical and Electronic

Equipment (OPTIM), Brasov, Rumania, pp. 208 – 212.

Shahriar, M.S., Ahmed, M.A., Ullah, M.S., 2012. Design and Analysis of a

Model Predictive Unified Power Flow Controller (MPUPFC) for Power

System Stability Assessment. International Journal of Electrical &

Computer Sciences IJECS-IJENS vol: 12 No: 04

Shi, Y., Eberhart R.C., 1998. A modified particle swarm optimizer, in Proc.

of the IEEE International Conference on Evolutionary Computation,

IEEE World Congress on Computational Intelligence, Anchorage, USA:

pp. 69-73, May 1998

Wang, L., Cheung, H., Hamlyn, A., Cheung. R., 2009. Model prediction

adaptive control of inter-area oscillations in multi-generators power

systems. In Power & Energy Society General Meeting, Toronto,

Canada. pp. 1 – 7.

Zambrano-Bigiarini, M., Clerc, M., Rojas. R., 2013. Standard Particle

Swarm Optimization 2011 at CEC-2013: A baseline for future PSO

improvements. In Evolutionary Computation (CEC), IEEE Congress,

New York, USA, pp. 2337-2344.

Zheng, T. Ed., 2011. Advanced Model Predictive Control. InTech.

Abstract Views

86
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912