Modeling of impact dynamics and application in public security education

Marcos Rodríguez-Millán, Miguel Marco, José Antonio Loya, Fernando Moure, María Henar Miguélez

Abstract

This work presents a methodology for interfacing with the students in order to study impact problems. The results are derived from the Bachelor Thesis developed at the end of the fourth course in the Security Engineering Degree. The knowledge regarding security topic and the use of new analysis tools (commercial finite element solver) have proved to be extremely useful for future Guardia Civil officers.

Keywords

Security Engineering Degree; impact; teaching methodologies; Bachelor Thesis

Full Text:

PDF

References

BOE nº 108, May 6 1989, Creación Universidad Carlos III de Madrid (p. 13323). http://www.boe.es/boe/dias/1989/05/06/pdfs/A13323-13323.pdf

Britain, G. (1998). On the ballistic resistance of multi- layered targets with air gaps. International Journal of Solids and Structures. 35(23): 3097–3103. http://dx.doi.org/10.1016/S0020-7683(97)00358-2

Carradò A., Faerber J., Niemeyer S., Ziegmann G., Palkowski H. (2011). Metal/polymer/metal hybrid systems: Towards potential formability applications, Composite Structures, 93 (2): 715-721. http://dx.doi.org/10.1016/j.compstruct.2010.07.016

Corran, R. S. J., Shadbolt, P. J., & Ruiz, C. (1983) Impact loading of plates- An experimental investigation. International Journal of Impact Engineering, 1(l): 3–22. http://dx.doi.org/10.1016/0734-743X(83)90010-6

Deng, Y., Zhang, W., & Cao, Z. (2013) Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against ogival-nosed rigid projectiles impact. Materials and Design, 2013;44, 228–239. http://dx.doi.org/10.1016/j.matdes.2012.06.048

Dey, S., Børvik, T., Teng, X., Wierzbicki, T., & Hopperstad, O. S. (2007). On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 2007; 44(20), 6701–6723.

Display.3acomposites (2015). http://www.display.3acomposites.com/es/productos/hylite /caracteristicas.html Accessed March 2015.

Gower, H. L., Cronin, D. S., Plumtree, A.(2008) Ballistic impact response of laminated composite panels. International Journal of Impact Engineering. 35(9): 1000–1008. http://dx.doi.org/10.1016/j.ijimpeng.2007.07.007

Johnson G.R., Cook W.H. (1983), A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of 7th international symposium on ballistics, 541–547.

Librescu L, Hause T. (2000) Recent developments in the modelling and behaviour of advanced sandwich constructions: a survey. Compos Struct. 48:1–17. http://dx.doi.org/10.1016/S0263-8223(99)00068-9

Marco M, Rodríguez-Millán M., Santiuste C., Giner E., Miguélez M.H.. (2015) A review on recent advances in numerical modelling of bone cutting, Journal of the Mechanical Behavior of Biomedical Materials. 44: 179-201. http://dx.doi.org/10.1016/j.jmbbm.2014.12.006

Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S. (2006) Stamp forming of polypropylene based fibre-metal laminates: the effect of process variables on formability. J Mater Process Technol. 172(2):163–8. http://dx.doi.org/10.1016/j.jmatprotec.2005.09.002

Ní A, Cassidy M., Curtis M., Destrade M., Gilchrist M. D. (2013), A combined experimental and numerical study of stab-penetration forces, Forensic Science International 233:7–13. http://dx.doi.org/10.1016/j.forsciint.2013.08.011

Report (2011a). Opportunities in Protection Materials Science and Technology for Future Army Committee on Opportunities in Protection Materials Science and Technology for Future Army Applications National Materials Advisory Board and Board on Army Science and Technology Division on Engineering and Physical Sciences.

Report (2011b). Opportunities in Protection Materials Science and Technology for Future Army Applications. National Academy of Sciences.

Rodríguez-Millán, M., Vaz-Romero, A., Rusinek, a., Rodríguez-Martínez, J. A., & Arias, A. (2014). Experimental Study on the Perforation Process of 5754-H111 and 6082-T6 Aluminium Plates Subjected to Normal Impact by Conical, Hemispherical and Blunt Projectiles. Experimental Mechanics, 54(5), 729–742. http://dx.doi.org/10.1007/s11340-013-9829-z

Tabiei, A., Nilakantan, G. (2008) Ballistic Impact of Dry Woven Fabric Composites: A Review. Applied Mechanics Reviews. 61(1), 010801. http://dx.doi.org/10.1115/1.2821711

Talebi H., Wong S.V., Hamouda A.M.S. (2009) Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric, Composite Structures. 87(4):314-320 http://dx.doi.org/10.1016/j.compstruct.2008.02.009

Wilson D.V (1988). Aluminium versus steel in the family car the formability factor. Journal of MechWork Technology. 16:257–277. http://dx.doi.org/10.1016/0378-3804(88)90055-1

Abstract Views

5842
Metrics Loading ...

Metrics powered by PLOS ALM





This journal is distributed under a Creative Commons Attribution-NonCommercial-NonDerivs 4.0 Internacional License.

Universitat Politècnica de València

e-ISSN: 2341-2593   https://dx.doi.org/10.4995/muse