The interdisciplinary approach in textbooks: A study on energy issues

Carolina Martín Gámez, Teresa Prieto Ruz, Antonio Roman Muñoz Gallego


In a globalized and constantly changing world, education must be continuously updated. This requirement plays a major role in scientific and technological education, since technology may under goes significant changes in short periods of time. In such context, our students need educational opportunities that allow them to link scientific and technological aspects to many other subjects and situations which are closer to their personal interests and responsible actions. How to help our young people to discuss issues that need the consideration and integration of a variety of disciplines? How to encourage them to participate in a responsible way?

 In this study we focused on teaching and learning the nature of energy, and other related concepts, in science from an interdisciplinary point of view. We analyzed contents of secondary education textbooks and curricular guidelines, taking into account their importance as classroom resources, and discussed the level to which controversial issues were displayed, considering a multidisciplinary approach.

 Results highlight a lack of consideration of environmental and social impacts derived from energy production and consumption, and also a lack of attention to interdisciplinary aspects. Attention given to renewable energies does not fit the present role of these kinds of energies in society, focusing more on non-renewable energies. Generally texts emphasize traditional energies without regard to the future possibilities.


Interdisciplinary contents, Energy issues; Secondary Education; Textbooks.

Full Text:



Bliss, J., Monk, M. & Ogborn, J. (1983). Qualitative Data Analysis for Educational Research. London: Croom-Helm.

Bliss, J. & Ogborn, J. (1985). Children’s Choices of uses of energy. European Journal of Science Education, 7(2), 195-203. DOI: 10.1080/0140528850070210

CAA (2007). Orden de agosto de 2007, por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en Andalucía. (BOJA 5 de enero de 2007).

Colucci-Gray, L., Camino, E., Barbiero G., & Gray, D. (2006). From Scientific Literacy to Sustainability Literacy: An Ecological Framework for education. Science Education, 90, 227-252. DOI: 10.1002/sce.20109

Delors, J. (1996). La educación encierra un tesoro. México: Ediciones UNESCO.

Domenech, J. L., Gil-Perez, D., Gras-Martí, A., Guisasola, J., Martınez- Torregrosa, J., Salinas, J. & Trumper, R. (2007). Teaching of energy issues: A debate proposal for a global reorientation. Science and Education, 16, 43-64. DOI: 10.1007/s11191-005-5036-3

Edwards, M., Gil, D., Vilches, A. & Praia, J. (2004). La atención a la situación del mundo en la educación científica. Enseñanza de las Ciencias, 22 (1), 47-64.

Fernandez, M. A. (2010). O ensino das enerxias renovabeis factor clave na educación enerxética. Boletín das Ciencias, 69, 103-115.

García-Carmona, A. (2008). Relaciones CTS en la Educación Científica Básica. I. Un análisis desde los textos escolares en la enseñanza electrónica. Enseñanza de las Ciencias, 26(3), 375–388.

Gil, D. & Vilches, A. (2006). Algunos obstáculos e incomprensiones en torno a la sostenibilidad. Revista Eureka sobre Enseñanza y Divulgación de la Ciencia, 3(3), 507-516.

Hodson, D. (2003). Time for action: Science education for an aternative future. International Journal of Science Education, 25(6), 645-670. DOI: 10.1080/09500690305021

Holbrook, J. & Rannikmäe, M. (2007). Nature of Science Education for Enhancing Scientific Literacy. International Journal of Science Education, 29, 1347 - 1362. DOI: 10.1080/09500690601007549

Holbrook, J. & Rannikmäe, M. (2009). The meaning of scientific literacy. International Journal of environmental and Science Education, 4 (3), 275-288.

Jiménez, J. D. & Sampedro, C. (2006). ¿Son las Energías alternativas la solución del futuro? Alambique, 49, 71-80.

Kruger, C. (1990). Some primary teachers’ ideas about energy. Physics Education, 25, 86-91. DOI: 10.1088/0031-9120/25/2/002

Lee, H. S. & Liu, O. L. (2010). Assessing Learning Progression of Energy Concepts Across Middle School Grades: The Knowledge Integration Perspective. Science Education, 94, 665-688. DOI: 10.1002/sce.20382

Lemke, J. L. (2001). Articulating communities: Sociocultural perspectives on science education. Journal of Research in Science Teaching, 38(3), 296-316. DOI: 10.1002/1098-2736(200103)38:3<296::AID-TEA1007>3.0.CO;2-R

Lemke, J. L. (2006). Investigar para el futuro de la educación científica: Nuevas formas de aprender, Nuevas formas de vivir. Enseñanza de las Ciencias, 24(1), 5–12.

Liu, X. & McKeough, A. (2005). Developmental growth in students’ concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493 - 517. DOI: 10.1002/tea.20060

Martín, C. & Prieto, T. (2011). El potencial educativo del problema energético en la sociedad actual. En J. J. Maquilón, A. B. Mirete, A. Escarbajal & A. M. Giménez (Eds.), Cambios educativos y formativos para el desarrollo humano y sostenible (pp. 29-38). Murcia:

Martín, C., Prieto, T. & Jiménez, M.A. (2013). El problema de la producción y el consumo de energía: ¿Como es tratado en los libros de texto de Educación Secundaria? Enseñanza de las ciencias, 31(2), 153-171.

MEC. (2007). Real Decreto 1631/2006 de 29 de diciembre por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria (BOE 5 de enero de 2007).

Nordine, J., Krajcik, J. & Fortus, D. (2011). Transforming Energy Instruction in Middle Schools to Support Integrated Understanding and Future Learning. Science Education, 95, 670-699. DOI: 10.1002/sce.20423

OECD (2002). Definition and Selection of Competences (DeSeCo): Theoretical and conceptual foundations. Retrieved December 21, 2010 in

Pedrosa, M. A. (2008). Metas de desenvolvimiento do milenio e competencias- Energía e recursos energéticos em educaçao científica para todos. Comunicación presentada en el XXI Congreso de Enciga, O Carballiño, Orense.

Roth, W. M. y Lee, S. (2004). Science education as/for participation in the community. Science Education, 88, 263–291. DOI: 10.1002/sce.10113

Solomon, J. (1983). Messy, contradictory, and obstinately persistent: A study of children’s out-of-school ideas about energy. School Science Review, 65(231), 225 -233.

Thomas, C., Jennings, P. & Lloyd, B. (2008). Issues in renewable energy education. Australian Journal of Environmental Education, 24, 67-73.

Trumper, R. (1993). Children’s energy concepts: A cross-age study. International Journal of Science Education, 5(2), 139-148. DOI: 10.1080/0950069930150203

Trumper, R. (1998). A longitudinal study of Physics students’ conceptions of energy in pre-service training for high school teachers. Journal of Science Education and Technology, 7(4), 311-317. DOI: 10.1023/A:1021867108330

Zeidler, D. L., Sadler, T. D., Simmons, M. L. & Howes, E. V. (2005). A research based framework for socio-scientific issues education. Science Education, 89(3), 357–377. DOI: 10.1002/sce.20048

Zembylas, M. (2007). Emotional ecology: The intersection of emotional knowledge and pedagogical content knowledge in teaching. Teaching and Teacher Education, 23, 355–367. DOI: 10.1016/j.tate.2006.12.002

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Disiplinler Arası Öğretim Yaklaşımının Fen Bilgisi Öğretmen Adaylarının Enerji Kavramına Yönelik Bilişsel Yapılarına Etkisinin İncelenmesi
Gökhan GÜVEN, Yusuf SÜLÜN
Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi  first page: 249  year: 2018  
doi: 10.17522/balikesirnef.437753

This journal is distributed under a Creative Commons Attribution-NonCommercial-NonDerivs 4.0 Internacional License.

Universitat Politècnica de València

e-ISSN: 2341-2593