Use of technical computing systems in the context of engineering problems

Carlos Llopis-Albert, Francisco Rubio, L.M. Valle-Falcones, C. Grima-Olmedo

Abstract

This paper presents a teaching innovation project based on applying technical computing systems as a resource to improve learning in the classroom and as a way of evaluating transversal competences (TC). By these means, students analyze complex kinematic and dynamic mechanical systems in the context of the subject Dynamics of Mechanical Systems of the Master’s Degree in Mechatronics Engineering at Universitat Politècnica de València (Spain). We have observed that the use of such tools improves the students learning on the contents of the subject, allows to acquire the transversal competence related to the analysis and problem solving, and enhances the ability to understand concepts intuitively. Furthermore, results clearly show a positive influence on the use of such tools for improving the professional and ethical commitment to the issues raised.


Keywords

transversal competencies; technical computing systems; ethical responsibility; professional responsibility; dynamics of mechanical systems

Full Text:

PDF

References

Artobolevsky, I.I. 1975. Mechanisms in Modern Engineering Design: A Handbook for Engineers, Designers and Inventors. Seven books. Mir Pubblishers, Moscow.

Bloom, B.S. 1956. Taxonomy of Educational Objectives: The Classification of Educational Goals. David McKay Company, p. 201-7.

Llopis-Albert, C., Rubio, F., Valero, F. 2015. Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027

Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867

Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076

Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. 2019a. Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72

Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. 2020. Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803

Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. 2020a. Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352

Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. 2015. Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048

Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. 2016. Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008

Rubio, F., Llopis-Albert, C. 2019. Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743

Rubio, F., Valero, F., & Llopis-Albert, C. 2019a. A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596

SolidWorks software. 2020. Dassault Systèmes SolidWorks Corporation. 175 Wyman Street Waltham, MA 02451, USA. https://www.solidworks.com/

UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdf

Wolfram Mathematica software. 2020. The Wolfram Centre. Lower Road, Long Hanborough. Oxfordshire OX29 8FD, United Kingdom. https://www.wolfram.com/mathematica/

Valero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647

Valero, F., Rubio, F., Llopis-Albert, C. 2019. Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407

Valero, F., Rubio, F., Besa, A.J. 2019a. Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-0214

Abstract Views

695
Metrics Loading ...

Metrics powered by PLOS ALM





This journal is distributed under a Creative Commons Attribution-NonCommercial-NonDerivatives 4.0 Internacional License.

Universitat Politècnica de València

e-ISSN: 2341-2593   https://dx.doi.org/10.4995/muse