Experiências com um Curso de Modelagem Socioambiental
DOI:
https://doi.org/10.4995/msel.2015.2811Palabras clave:
Paradigmas de modelagem, Simulação computacional, Dinâmica de sistemas, Autômatos celulares, Modelagem baseada em agentes, TerraMEResumen
Em um curso de modelagem socioambiental, os alunos precisam aprender diferentes habilidades complementares que incluem a conceptualização de um modelo, diferentes paradigmas de modelagem, programação de computadores, bem como o processo de converter ideias e dados em um programa computacional usando uma determinada ferramenta de modelagem. Esses temas precisam ser ensinados em paralelo para manter uma audiência heterogênea motivada. Com base na experiência obtida com audiências multidisciplinares, este artigo descreve um curso de modelagem socioambiental que explora três paradigmas: dinâmica de sistemas, autômatos celulares e modelagem baseada em agentes. Apresentamos também um pequeno tutorial com alguns dos exemplos usados no curso.
Descargas
Citas
Angerhofer, B. J., Angelides, M. C. (2000). System dynamics modelling in supply chain management: 456 research review. Simulation conference, 2000. Proceedings. Winter (Vol. 1, pp. 342-351).
Axelrod, R. (2003). Advancing the art of simulation in the social sciences. Japanese Journal for Management Information System, 12(3), 3-16.
Batty, M. (2007). Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT press.
Batty, M., Xie, Y. (1994). From cells to cities. Environment and planning B, 21(7), 31-48. http://dx.doi.org/10.1068/b21s031
Camara, G., Vinhas, L., Ferreira, K. R., Queiroz, G. R. D., Souza, R. C. M. D., Monteiro, A. M. V., et al. (2008). Terralib: An open source gis library for large-scale environmental and socio-economic applications. In G. Hall M. Leahy (Eds.), Open source approaches in spatial data handling (Vol. 2, pp. 247-270). Springer Berlin Heidelberg. Available from http://dx.doi.org/10.1007/978-3-540-74831-1
Carneiro, T. G. S., Andrade, P. R., C^amara, G., Monteiro, A. M. V., Pereira, R. R. (2013). An extensible toolbox for modeling nature-society interactions. Environmental Modelling Software, 46(0), 104-117. Available from http://www.sciencedirect.com/science/article/pii/S1364815213000534 http://dx.doi.org/10.1016/j.envsoft.2013.03.002
Clarke, K. C., Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and gis: long-term urban growth prediction for san francisco and washington/baltimore. International Journal of Geographical Information Science, 12(7), 699-714. http://dx.doi.org/10.1080/136588198241617
Couclelis, H. (2000). Modeling frameworks, paradigms, and approaches. Geographic information systems and environmental modeling, 36-50.
Eberlein, R. L., Peterson, D. W. (1992). Understanding models with vensim. European journal of operational research, 59(1), 216-219. http://dx.doi.org/10.1016/0377-2217(92)90018-5
Feitosa, F. F., Monteiro, A. M. V. M. (2012). Vulnerabilidade e modelos de simulaçao como estratégias mediadoras: Contribuiçao ao debate das mudanças climáticas e ambientais. Geografia (Rio Claro), 37(2), 289-305.
Field, C., Barros, V., Dokken, D., et al. (2014). Climate change 2014: impacts, adaptation, and vulnerability. Volume I: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available from http://ipcc-wg2.gov/AR5/
Ford, F. A. (1999). Modeling the environment: an introduction to system dynamics models of environmental systems. Island Press.
Franklin, S., Graesser, A. (1997). Is it an agent, or just a program?: A taxonomy for autonomous agents. In J. Müller, M. Wooldridge, N. Jennings (Eds.), Intelligent agents III: agent theories, architectures, 4 and languages (Vol. 1193, pp. 21-35). Springer Berlin Heidelberg. Available from http://dx.doi.org/10.1007/BFb0013570
Ghaffarzadegan, N., Lyneis, J., Richardson, G. P. (2011). How small system dynamics models can help the public policy process. System Dynamics Review, 27(1), 22-44. Available from http://dx.doi.org/ 10.1002/sdr.442
Gilbert, N. (2004). Agent-based social simulation: dealing with complexity. The Complex Systems Network of Excellence, 9(25), 1-14.
Gilbert, N. (2008). Agent-based models. London: Sage Publications.
Glaser, M., Krause, G., Ratter, B. M., Welp, M. (2012). Human-nature interactions in the anthropocene: Potentials of social-ecological systems analysis. New York/London: Routledge. Available from http:// isbnplus.org/9780415510004
Hadjerrouit, S. (1998). Java as first programming language: a critical evaluation. ACM SIGCSE Bulletin, 30(2), 43-47. http://dx.doi.org/10.1145/292422.292440
Hagoort, M., Geertman, S., Ottens, H. (2008). Spatial externalities, neighbourhood rules and ca land-use modelling. The Annals of Regional Science, 42(1), 39-56. http://dx.doi.org/10.1007/s00168-007-0140-8
Hesselbarth, H. W., Gobel, I. R. (1991). Simulation of recrystallization by cellular automata. Acta Metallurgica et Materialia, 39(9), 2135-2143. Available from http://www.sciencedirect.com/science/ article/pii/0956715191901832 http://dx.doi.org/10.1016/0956-7151(91)90183-2
Holland, J. H. (1998). Emergence: from chaos to order. Oxford University Press.
Ierusalimschy, R., Figueiredo, L. H. de, Celes, W. F. (1996). Lua: an extensible extension language. Software Practice Experience, 26(6), 635-652. Available from http://dx.doi.org/10.1002/(SICI) 1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
Janssen, M. A., Ostrom, E. (2006). Governing social-ecological systems. In L. Tesfatsion K. Judd (Eds.), (Vol. 2, pp. 1465-1509). Elsevier. Available from http://www.sciencedirect.com/science/article/ pii/S1574002105020307
Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. In Proceedings of the 10th annual sigcse conference on innovation and technology in computer science education (pp. 14-18). New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/ 1067445.1067453
Macy, M. W., Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143-166. Available from http://www.jstor.org/stable/3069238 http://dx.doi.org/10.1146/annurev.soc.28.110601.141117
Meadows, D. H. (2008). Thinking in systems: A primer. Chelsea Green Publishing.
Meadows, D. H., Meadows, D., Randers, J., Behrens III, W. W. (1972). The limits to growth: A report for the club of rome's project on the predicament of mankind. New York: Universe. http://dx.doi.org/10.1349/ddlp.1
Medeiros, L. C. d. C., Castilho, C. A. R., Braga, C., Souza, W. V., Regis, L., Monteiro, A. M. V. (2011). Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLOS neglected tropical diseases, 5(1), e942. http://dx.doi.org/10.1371/journal.pntd.0000942
Milne, I., Rowe, G. (2002). Difficulties in learning and teaching programming-views of students and tutors. Education and Information Technologies , 7 (1), 55-66. Available from http://dx.doi.org/10.1023/A%3A1015362608943
Muetzelfeldt, R., Massheder, J. (2003). The simile visual modelling environment. European Journal of Agronomy, 18(3), 345-358. http://dx.doi.org/10.1016/S1161-0301(02)00112-0
North, M. J., Collier, N. T., Vos, J. R. (2006, January). Experiences creating three implementations of the RePast agent modeling toolkit. ACM Trans. Model. Comput. Simul., 16(1), 1-25. Available from http://doi.acm.org/10.1145/1122012.1122013
Railsback, S., Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton University Press. Available from http://books.google.com.br/books?id=VQOjinaRG9cC
Roberts, N., Andersen, D. F., Deal, R. M., Garet, M. S., Shaffer, W. A. (1983). Introduction to computer simulation: the system dynamics approach. Addison-Wesley Publishing Company.
Slimi, R., El Yacoubi, S., Dumonteil, E., Gourbi ere, S. (2009). A cellular automata model for chagas disease. Applied Mathematical Modelling, 33(2), 1072-1085. Available from http://www.sciencedirect.com/ science/article/pii/S0307904X07003563 http://dx.doi.org/10.1016/j.apm.2007.12.028
Sloman, A. (1971). Interactions between philosophy and artificial intelligence: The role of intuition and non-logical reasoning in intelligence. Artificial Intelligence, 2(3-4), 209-225. Available from http:// www.sciencedirect.com/science/article/pii/0004370271900117 http://dx.doi.org/10.1016/0004-3702(71)90011-7
Smith, D. C., Cypher, A., Spohrer, J. (1994). Kidsim: Programming agents without a programming language. Commun. ACM , 37 (7), 54-67. Available from http://doi.acm.org/10.1145/176789.176795
Star, S. L., Griesemer, J. R. (1989). Institutional ecology, 'translations' and boundary objects: Amateurs and professionals in Berkeley's museum of vertebrate zoology, 1907-39. Social Studies of Science, 19(3), 387-420. http://dx.doi.org/10.1177/030631289019003001
Starfield, A. M., Smith, K., Bleloch, A. L. (1993). How to model it: Problem solving for the computer age. New York, NY, USA: McGraw-Hill, Inc.
Stave, K. A. (2002). Using system dynamics to improve public participation in environmental decisions. System Dynamics Review, 18(2), 139-167. Available from http://dx.doi.org/10.1002/sdr.237
Stave, K. A. (2003). A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. Journal of Environmental Management, 67(4), 303-313. Available from http://www.sciencedirect.com/science/article/pii/S0301479702002050 http://dx.doi.org/10.1016/S0301-4797(02)00205-0
Tisue, S., Wilensky, U. (2004). Netlogo: A simple environment for modeling complexity. In International conference on complex systems (pp. 16-21).
Von Neumann, J. (1966). Theory of self-reproducing automata. Burks, A.W. (Ed.).
Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T. (2005). Environments in multiagent systems. The Knowledge Engineering Review, 20(2), 127-141. http://dx.doi.org/10.1017/S0269888905000457
Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311(4), 419-24. http://dx.doi.org/10.1038/311419a0
Wooldridge, M., Jennings, N. R. (1995). Intelligent agents: Theory and practice. The knowledge engineering review, 10(02), 115-152. http://dx.doi.org/10.1017/S0269888900008122
Zambonelli, F., Jennings, N. R., Wooldridge, M. (2001). Organisational abstractions for the analysis and design of multi-agent systems. In Agent-oriented software engineering (pp. 235-251). http://dx.doi.org/10.1007/3-540-44564-1_16
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista publica bajo una Creative Commons Attribution-NonCommercial 4.0 International License