Alternative Teaching Methodology in Marine Engineering Courses: employing TIC & CFD Tools


  • José E. Gutiérrez Universidad Politécnica de Cartagena
  • Blas Zamora Parra Universidad Politécnica de Cartagena
  • Jerónimo A. Esteve Universidad Politécnica de Cartagena


Palabras clave:

Marine Engineering, Project-based Learning, Information Technologies, Computational Fluid Dynamics


An alternative teaching-learning methodology for the subject "Hydrodynamic, Resistance and Propulsion" in Degrees concerned with NAval Engineering, is presented. The goal of the pedagogical approach is the acquirement of appropiate skills related to the ability of analyzing and designing different types of ships. The blended learning concept is employed, including the supervised learnin as key ingredient. The roles of both Information and Communication Technologies (ICT) and Computational Fluid Dynamics (CFD), as educational tuools, are some specific features of the methodology. A pedagocial method that involves project based learning, using CFD, is applied. The evaluation of the student satisfaction is conducted by questionaries.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José E. Gutiérrez, Universidad Politécnica de Cartagena

Teaching and Research staff


Calisal, S.M. & McGreer, D. (1993). A resistance study on a systematic series of low L/B vessel, Marine Technology 30, 286 – 297.


Çengel, Y.A., & Cimbala, J.M. (2006). Fluid Mechanics (fundamental and applications), New York: McGraw-Hill.

Choi, J.E., Min, K.S. & Seo, H.W. (2010). Resistance and propulsion characteristics of various commercial ships based on CFD results, Ocean Engineering 37, 549 – 566. DOI: 10.1016/j.oceaneng.2010.

Compass Ingeniería y Sistemas. (2013). Tdyn Tutorial: environment for multi-physic simulation, including fluid dynamics, turbulence advection of species, structural mechanic, free surface and user defined PDE solver. Retrieved from:

Compton, R.H. (1986). Resistance of a systematic series of semiplaning transomâ€stern hulls. Marine Technology SNAME News 23, 1 – 26.

Fung, S.C. (1992). Resistance and powering prediction for transom stern hull form during early stage. SNAME Transaction on Ship Design 99, 29 – 73.

García, A.G. (1991). Predicción de Potencia y Optimización del Bulbo de Proa en Buques Pesqueros. Canal de Experiencias Hidrodinámicas El Pardo, Government of Spain. Report 131.

Gómez G.P., & Adalid J.G. (1998). Detailed design of ship propellers. Spain: Fondo Editorial de Ingeniería Naval (FEIN), Colegio Oficial de Ingenieros Navales y Oceánicos.

Hollenbach, K.U. (1998). Estimating resistance and propulsion for single-screw and twin-screw ships. Ship Technology Research 45, 72 – 76.

Holtrop, J. (1984). A statistical reâ€analysis of resistance and propulsion data. International Shipbuilding Progress 31, 272 – 276.

Hung, T.C., Wang, S.K., Tai, S.W., & Hung, C.T. (2005). An innovative improvement of engineering learning system using computational fluid dynamics concept, Computer Application in Engineering Education 13, 306 – 315. DOI: 10.1002/cae.20056Comput

Kybartaite, A., Nousiainen, I., & Malmivuo, J. (2013) Technologies and methods in virtual campus for improving learning process, Computer Application in Engineering Education 21, 185–192. DOI: 10.1002/cae.20460Comput

Mills, J., & Treagust, D. (2003) Engineering education: Is problemâ€based or projectâ€based learning the answer? Australasian Journal of Engineering Education, Retrieved form:

Mutu, V., & Ionas, O. (2004) Computer applications and technologies at ship design group Galati. V. Bertram and M. Armada (Eds.). Proceedings of the 3rd International Conference on Computer and IT Applications in the Maritime Industries. (pp. 334 –339) Sigüeza, Spain.

Orosa, J.A. (2011). Programming languages for marine engineers, Computer Application in Engineering Education 19, 591 – 597. DOI: 10.1002/cae.20339Comput.

Pieritz, R.A., Mendes, R., Da Silva, R.F.A.F., & Maliska, C.R. (2004). CFD studio: An educational software package for CFD analysis and design, Computer Application in Engineering Education 12, 20–30. DOI: 10.1002/cae.10055Comput.

Qui, M., & Chen, L. (2010). A problemâ€based learning approach to teaching an Advanced Software Engineering Course. Proceedings of the 2nd International Workshop on Education Technology and Computer Science. (pp. 252 – 255), 3, Xiamen, China.

Ruggeri, F., Nogueira, M.C., Sampaio, C.M.P., & Nishimoto, K. (2012). Parametric model and CFD integrated process for WED optimization. V. Bertram (Ed.). Proceedings of 11th International Conference on Computer and IT Applications in the Maritime Industries, (pp. 323 – 335). Liège, Belgium.

Terzis, T., & Economides, A.A. (2011). The acceptance and use of computer based assessment. Computers & Education, 56, 1032 – 1044.

Tu, J., Yeoh, G.H., & Liu, C. (2013). Computational Fluid Dynamics: A Practical Approach (2nd ed.). Boston: Elsevier.

Van Lammeren, W.P.A., Van Manen, J.D., & Oorterveld, M.W.C. (1969). The Wageningen Bâ€screw series. SNAME Transaction 77, 1 – 43.

Zamora, B., Kaiser, A.S., & Vicente, P.G. (2010). Improvement in learning on fluid mechanics and heat transfer courses using computational fluid dynamics. International Journal of Mechanical Engineering Education, 38(2), 147 – 166.