Problemas de estimación de magnitudes no alcanzables: una propuesta de aula a partir de los modelos generados por los alumnos

Lluís Albarracín, Núria Gorgorió

Resumen

En este artículo presentamos una propuesta didáctica para introducir la modelización en las aulas de Educación Secundaria. La propuesta presentada se basa en el uso de un  conjunto de problemas de Fermi orientados a estimar el valor de grandes cantidades. Para concretarla se utilizan los resultados de un estudio previo en el que se describen las estrategias propuestas por los alumnos a este tipo de problemas.


Palabras clave

Resolución de problemas; Estimación; Modelización; Educación Secundaria Obligatoria

Texto completo:

PDF

Referencias

L. Albarracín and N. Gorgorió. Una propuesta de modelización en secundaria: problemas de estimación de magnitudes no alcanzables. Modelling in Science Education and Learning, 4:71-81, 2011.

L. Albarracín and N. Gorgorió. On strategies for solving inconceivable magnitude estimation problems. In Tai-Yih Tso, editor, Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, volume 2, pages 2-11, 2012.

M. Aravena, C. Caama-o, and J. Giménez. Modelos matemáticos a través de proyectos. Revista Latinoamericana de Investigación en Matemática Educativa, 11(1):49-92, 2008.

J. B. Ärlebäck. On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast, 6(3):331- 364, Juliol 2009.

H. Barth, N. Kanwisher, and E. Spelke. The construction of large number representations in adults. Cognition, 86:201-221, 2003.

http://dx.doi.org/10.1016/S0010-0277(02)00178-6

W. Blum. Icme study 14: Applications and modelling in mathematics education-discussion document. Educational studies in mathematics, 51:149-171, 2003.

http://dx.doi.org/10.1023/A:1022435827400

J. L. Booth and R. S. Siegler. Developmental and individual di erences in pure numerical estimation. Developmental Psychology, 41(6):189-201, 2006.

http://dx.doi.org/10.1037/0012-1649.41.6.189

H. L. Carter. Estimation and mental computation, chapter Linking estimation to psychological variables in the early years, pages 74-81. National Council of Teachers of Mathematics, 1986.

O. Chapman. Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62:211-230, 2006.

http://dx.doi.org/10.1007/s10649-006-7834-1

H. Doerr and L. English. A modelling perspective on students' mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2):110-136, 2003.

http://dx.doi.org/10.2307/30034902

C. J. Efthimiou and R. A. Llewellyn. Cinema, Fermi problems and general education. Physics Education, 42(42):253-261, 2007.

http://dx.doi.org/10.1088/0031-9120/42/3/003

L. D. English. Mathematical modeling in the primary school. Educational Studies in Mathematics, 63(3):303-323, 2006.

http://dx.doi.org/10.1007/s10649-005-9013-1

C. B. Esteley, M. E. Villarreal, and H. R. Alagia. The overgeneralization of linear models among university students' mathematical productions: A long-term study. Mathematical Thinking and Learning, 12:86-108, 2010.

http://dx.doi.org/10.1080/10986060903465988

R. Borromeo Ferri. Theoretical and empirical differentiations of phases in the modeling process. ZDM, 38(2):86-95, 2006.

http://dx.doi.org/10.1007/BF02655883

N. Ginsburg. Numerosity estimation as a function of stimulus organization. Perception, 20(5):681-686, 1991.

http://dx.doi.org/10.1068/p200681

J. G. Greeno. Number sense as situated knowing in a conceptual domain. Journal for Research in Mathematics Education, 22(13):170-218, 1991.

http://dx.doi.org/10.2307/749074

M. Van Den Heuvel-Panhuizen. The role of contexts in assessment problems in mathematics. For the Learning of Mathematics, 25(2):2-10, 2005.

D. J. Hildreth. The use of strategies in estimating measurements. Arithmetic Teacher, 30(5):50-54, 1983.

T. P. Hogan and K. L. Brezinski. Quantitative estimation: One, two, or three abilities? Mathematical Thinking and Learning, 5(4):259 | 280, 2003.

M. G. Jones, G. E. Gardner, A. R. Taylor, J. H. Forrester, and T. Andre. Students' accuracy of measurement estimation: Context, units, and logical thinking. School Science and Mathematics, 112(3):171-178, 2012.

http://dx.doi.org/10.1111/j.1949-8594.2011.00130.x

R. Lesh and G. Harel. Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2):157|189, 2003.

R. Lesh and J. S. Zawojewski. Second handbook of research on mathematics teaching and learning, chapter Problem solving and modeling. Information Age Publishing, 2007.

A. R. Taylor M. G. Jones and B. Broadwell. Estimating linear size and scale: Body rulers. International Journal of Science Education, 31(11):1495-1509, 2009.

http://dx.doi.org/10.1080/09500690802101976

A. Peter-Koop. Fermi problems in primary mathematics classrooms: Pupils' interactive modelling processes. In S. Ruwisch and A. Peter-Koop, editors, Mathematics education for the third millennium: Towards 2010 (Proceedings of the 27th annual conference of the Mathematics Education Research Group of Australasia, Townsville), 2004.

L. Puig. Elementos de resoluci on de problemas. Ed. Comares, Granada, 1996.

R. E. Reys, J. F. Rybolt, B. J. Bestgen, and J. W. Wyatt. Identication and characterization of computational estimation processes used by inschool pupils and out-of-school adults. Technical report, National Institute of Education, 1980.

R. E. Reys, J. F. Rybolt, B. J. Bestgen, and J. W. Wyatt. Processes used by good computational estimators. Journal for Research in Mathematics Education, 13(183-201), 1982.

http://dx.doi.org/10.2307/748555

J. B. Ärlebäck. Exploring the solving process of groups solving realistic fermi problem from the perspective of the anthropolgical theory of didactits. In M. Pytlak, Ewa Swoboda, and T. Rowland, editors, Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (CERME7), pages 1010-1019. Rzeszów: University of Rzeszów, Poland, 2011.

B. Sriraman and R. Lesh. Modeling conceptions revisited. ZDM, 38(3):247- 254, 2006.

http://dx.doi.org/10.1007/BF02652808

L. Verschaffel. Taking the modeling perspective seriously at the elementary level: Promises and pitfalls. In A. D. Cockburn and E. Nardi, editors, Proceedings of the 26th PME International Conference, volume 1, page 64-80, 2002.

Abstract Views

942
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Complejidad en el proceso de modelización de una tarea estadística
Àngels Aymerich Restoy, Lluís Albarracín Gordo
Modelling in Science Education and Learning  vol: 9  num.: 1  primera página: 5  año: 2016  
doi: 10.4995/msel.2016.4121



Esta revista esta bajo una Licencia licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1988-3145   https://dx.doi.org/10.4995/msel