Estudio de caso sobre los procesos de modelización matemática de los estudiantes teniendo en cuenta el nivel de rendimiento
DOI:
https://doi.org/10.4995/msel.2022.16506Palabras clave:
Diferenciación natural, modelización matemática, rendimiento matemático, análisis de contenido cualitativoResumen
La heterogeneidad puede tenerse en cuenta en el aula mediante el uso de tareas de autodiferenciación. En este sentido, desde el punto de vista matemático-didáctico, las tareas de modelización tienen un interés especial. El artículo se centra en la dimensión de heterogeneidad del rendimiento matemático y la competencia de modelización de los alumnos de 15 años. Se describirán los primeros resultados de un estudio de caso en el que se analiza en qué medida los procesos de una tarea de modelización varían con respecto al aspecto de los niveles de rendimiento.Descargas
Citas
Achmetli, K., & Schukajlow, S. (2019). Multiple Solutions, The Experience of Competence, and Interest. In M. S. Hannula, G. C. Leder, F. Morselli, M. Vollstedt, & Q. Zhang (Eds.), Affect and Mathematics Education (pp. 39-65). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-13761-8_3
Bergman Ärlebäck, J., & Bergsten, C. (2010). On the Use of Realistic Fermi Problems in Introducing Mathematical Modelling in Upper Secondary Mathematics. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling Students' Mathematical Modeling Competencies (pp. 597-609). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-0561-1_52
Blum, W. & Leiß, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 222-231). Chichester, England: Horwood. https://doi.org/10.1533/9780857099419.5.221
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95. https://doi.org/10.1007/BF02655883
Borromeo Ferri, R. (2007). Personal experiences and extra-mathematical knowledge as an influence factor on modelling routes of pupils. In Pitta-Pantazi, D; Philippou, G. (Eds.): CERME 5 - Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education. Larnaca, Zypern. (pp. 2080-2089).
Borromeo Ferri, R. (2018). Learning How to Teach Mathematical Modeling in School and Teacher Education. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-68072-9
Büchter, A. & Leuders, T. (2005). Mathematikaufgaben selbst entwickeln. Lernen fördern - Leistung überprüfen. Berlin: Cornelsen Scriptor
Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. https://doi.org/10.1037/h0026256
https://doi.org/10.1037/h0026256
Kaiser, G. (2007). Modelling and Modelling Competencies in School. In C. R. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 110-119). Chichester: Horwood. https://doi.org/10.1533/9780857099419.3.110
Maaß, K. (2005). Barriers and opportunities for the integration of modelling in mathematics classes: Results of an empirical study. Teaching Mathematics and Its Applications, 24(2-3), 61-74. https://doi.org/10.1093/teamat/hri019
Maaß, K. (2007). Mathematisches Modellieren. Aufgaben für die Sekundarstufe I. Berlin: Cornelsen Scriptor.
Maaß, K. (2010). Classification Scheme for Modelling Tasks. Journal für Mathematik-Didaktik, 31(2), S. 285-311. https://doi.org/10.1007/s13138-010-0010-2
Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and software solution. Klagenfurt. Retrieved August 8, 2020, from https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173.
Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen (2016). Kerncurriculum für Lehrämter in den Zentren für schulpraktische Lehrerausbildung und in den Ausbildungsschulen.
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P.L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3-32). The 14th ICMI study. Boston: Springer. https://doi.org/10.1007/978-0-387-29822-1_1
Reusser, K., Pauli, C. & Waldis, M. (Eds.) (2010): Unterrichtsgestaltung und Unterrichtsqualität - Ergebnisse einer internationalen und schweizerischen Videostudie zum Mathematikunterricht. Münster: Waxmann.
Reilly, E. (2017). Developing a Mathematical Modelling Task for All Students. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and Applications (pp. 443-453). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-62968-1_37
Reit, X.-R., & Ludwig, M. (2015). An Approach to Theory Based Modelling Tasks. In G. A. Stillman, W. Blum, & M. Salett Biembengut (Eds.), Mathematical Modelling in Education Research and Practice (pp. 81-91). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-18272-8_6
Scherer, P. & Krauthausen, G. (2010). Natural Differentiation in mathematics - the NaDiMa project. Panama-Post, 29(3), 14-16. https://doi.org/10.1007/978-3-642-13990-1_3
Schnell, S., & Prediger, S. (2017). Mathematics Enrichment for All - Noticing and Enhancing Mathematical Potentials of Underprivileged Students as An Issue of Equity. EURASIA Journal of Mathematics, Science and Technology Education, 13(1). https://doi.org/10.12973/eurasia.2017.00609a
Scott-Wilson, R., Wessels, D. C. J., Wessels, H. M., & Swart, E. (2017). The Hidden Benefits of Mathematical Modelling for Students with Disabilities. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and Applications (pp. 455-465). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-62968-1_38
Shade, D. D. (1991). Developmentally appropriate software. Day Care & Early Education, 18(4), 34-36. https://doi.org/10.1007/BF01617296
Staples, M. E. (2008). Promoting student collaboration in a detracked, heterogeneous secondary mathematics classroom. Journal of Mathematics Teacher Education, 11(5), 349-371. https://doi.org/10.1007/s10857-008-9078-8
Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM, 47(7), 1255-1267. https://doi.org/10.1007/s11858-015-0741-0
Schmidt, S., Ennemoser, M. & Krajewski, K. (2013). DEMAT 9. Deutscher Mathematiktest für neunte Klassen. Göttingen: Hogrefe Verlag.
Siller, H.-S., & Greefrath, G. (2020). Modelling Tasks in Central Examinations Based on the Example of Austria. In G. Stillman, G. Kaiser, & C. E. Lampen (Eds.), Mathematical Modelling Education and Sense-making (pp. 383-392). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-37673-4_33
Westfälische Nachrichten (2014): Aktion der Werbegemeinschaft. Es weihnachtet vorm Rathaus. Beitrag in den Westfälischen Nachrichten vom 24.11.2014. Retrieved January 19, 2020, from: https://www.wn.de/Muensterland/Kreis-Steinfurt/Metelen/2014/11/1800209-Aktion-der-Werbegemeinschaft-Es-weihnachtet-vorm-Rathaus
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista publica bajo una Creative Commons Attribution-NonCommercial 4.0 International License