Evaluating the thermal properties of knit fabric made of 100% conventional cotton and BCI cotton

Sumaiya Tabassum

https://orcid.org/0009-0005-5431-5483

Bangladesh

Bangladesh University of Textiles image/svg+xml

Department of Apparel Engineering

Irfan Najib

https://orcid.org/0009-0003-9680-9698

Bangladesh

Bangladesh University of Textiles image/svg+xml

Department of Apparel Engineering

Rehnuma Razzak Fera

Bangladesh

Bangladesh University of Textiles image/svg+xml

Department of Apparel Engineering

S M Saiful Islam

https://orcid.org/0009-0009-5565-0434

Bangladesh

Bangladesh University of Textiles image/svg+xml

Department of Apparel Engineering

Shah Md. Maruf Hasan

https://orcid.org/0009-0001-4596-938X

Bangladesh

Bangladesh University of Textiles image/svg+xml

Department of Apparel Engineering

Md. Nahid-Ull-Islam

https://orcid.org/0009-0005-5464-2492

Bangladesh

Bangladesh University of Textiles image/svg+xml

Department of Apparel Engineering

|

Accepted: 2025-03-26

|

Published: 2025-06-11

DOI: https://doi.org/10.4995/jarte.2025.23135
Funding Data

Downloads

Keywords:

knit fabric, thermal comfort, thermal resistance, thermal conductivity, air permeability

Supporting agencies:

This research was not funded

Abstract:

The study discusses research findings on the thermal characteristics of BCI cotton, 100% conventional cotton, and blends with polyester and elastane. The investigation emphasises single-jersey, rib jersey, and single-jersey blend arrangements. The thermal properties of the recommended knitted material configuration were assessed. The results indicate that each fabric composition with a varied structure exhibits distinct thermal characteristics. BCI cotton fabrics have good uniformity and structure due to cultivation compliance, better thermal conductivity, air permeability, and thermal transmittance. They are eventually better for sportswear and summer apparel products. However, it is essential to consider that the other side of both rib and single jersey fabrics made of conventional cotton with less uniformity includes a more significant CLO and thermal resistance value than BCI cotton fabrics, giving a warmer feeling and being more fruitful for winter clothing with better-trapped air and heat. Thermo-physiological comfort is influenced by various factors such as fiber content, yarn quality, fabric finish, structure, and heat and water vapor resistance, which increase with material thickness and air entrapment in the fabric.

Show more Show less

References:

Abhijit Majumdar, S.M., Samrat Mukhopadhyay, & Ravindra Yadav. (2010). Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. International Journal of Thermal Sciences, 49(10), 2042-2048. https://doi.org/10.1016/j.ijthermalsci.2010.05.017

Afzal, A., Ahmad, S., Rasheed, A., Ahmad, F., Iftikhar, F., & Nawab, Y. (2017). Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics. Autex Research Journal, 17, 20-26. https://doi.org/10.1515/aut-2015-0037

Athirah Mansor, S.A.G., Suzaini Abdul Ghani & Muhamad Faizul Yahya. (2016). Knitted Fabric Parameters in Relation to Comfort Properties. American Journal of Materials Science, 6(6), 147-151. http://article.sapub.org/10.5923.j.materials.20160606.01.html

Bedek, G., Salaün, F., Martinkovska, Z., Devaux, E., & Dupont, D. (2011). Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Applied Ergonomics, 42(6), 792-800. https://doi.org/10.1016/j.apergo.2011.01.001

Buzatu, G.C., Stan-Ivan, F.E., Mircea, P.M., & Manescu, L.G. (2017). Thermal transmittance determination for different components of buildings. 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), 227-232. https://doi.org/10.1109/OPTIM.2017.7974975

Campos, A.T. V., & Goyal, R. (2021). Life cycle assessment of cotton yarns for IKEA. (Independent thesis Advanced level (degree of Master (Two Years)) Student thesis), Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302403 DiVA database. (21545)

Chen, H., Yue, Z., Ren, D., Zeng, H., Wei, T.R., Zhao, K., . . . Shi, X. (2018). Thermal Conductivity during Phase Transitions. Advanced Materials, 31. https://doi.org/10.1002/adma.201806518

Collins, K., & Hoinville, E. (1980). Temperature requirements in old age. Building Services Engineering Research & Technology, 1, 165-172. https://doi.org/10.1177/014362448000100401

Çoruh, E. (2015;). Optimization of Comfort Properties of Single Jersey Knitted Fabrics. Fibres & Textiles in Eastern Europe, 23, 4(112): 66-72. http://dx.doi.org/10.5604/12303666.1152728

Čubrić, I.S., Skenderi, Z., Mihelić-Bogdanić, A., & Andrassy, M. (2012). Experimental study of thermal resistance of knitted fabrics. Experimental Thermal and Fluid Science, 38, 223-228. https://doi.org/10.1016/j.expthermflusci.2011.12.010

Das, B., Das, A., Kothari, V.K., Fanguiero, R., & Araújo, M.D. (2007). Moisture transmission through textiles. Autex Research Journal, 7(2), 100-110. https://doi.org/10.1515/aut-2007-070204

Demı̇ryürek, O., Güleyüpoğlu, İ., & Turhan, E.D. A. (2019). Effects of repeated laundering on thermal comfort properties of cellulosic knitted fabrics. Cellulose Chemistry and Technology, 53, 795-803. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.78

Dhingra, R.C., & Postle, R. (1977). Air Permeability of Woven, Double-Knitted, and Warp-Knitted Outerwear Fabrics. Textile Research Journal, 47, 630-631. https://doi.org/10.1177/004051757704700909

Erdumlu, N., & Saricam, C. (2017). Investigating the effect of some fabric parameters on the thermal comfort properties of flat knitted acrylic fabrics for winter wear. Textile Research Journal, 87(11), 1349-1359. https://doi.org/10.1177/0040517516652347

Garg, S., Sikka, M., & Midha, V.K. (2022). Review on fabric thermal comfort in wet conditions. Research Journal of Textile and Apparel, 28(2), 206-219. https://doi.org/10.1108/RJTA-03-2022-0034

Goldman, R.F. (1974). Clothing design for comfort and work performance in extreme thermal environments. Transactions of the New York Academy of Sciences, 36(6), 531-544. https://doi.org/10.1111/j.2164-0947.1974.tb01599.x

Gu, W., Wu, S., & Li, S. (2017). Elucidation of the thermal insulation in textile materials. https://doi.org/10.15406/jteft.2017.02.00068

Gunesoglu, S., Kaplangiray, B., & Gunesoglu, C. (2005). Thermal Contact Properties of 2Yarn Fleece Knitted Fabrics. Fibres Text. East. Eur., 13, 48-50.

Gurarda, A., Zengin, T., & Tosun, G. (2018). Investigation of the Effect of Apparel Fabrics Structure on Air Permeability and Thermal Comfort Properties. [Gİysİlİk kumaŞlarin yapisinin hava geÇİrgenlİĞİ ve termal konfor Özellİklerİ Üzerİne etkİsİnİn İncelenmesİ]. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 169-178. https://doi.org/10.17482/uumfd.452140

Hassan, S.H., Hussain, T., Awais, H., & Ali, Z. (2024). Effects of yarn count and twist multiplier on the properties of knitted fabrics made from naturally colored sustainable cotton. Journal of Engineered Fibers and Fabrics, 19. https://doi.org/10.1177/15589250241257312

Ibrahim, N.A., Khalifa, T.F., El-Hossamy, M.B., & Tawfik, T.M. (2010). Effect of Knit Structure and Finishing Treatments on Functional and Comfort Properties of Cotton Knitted Fabrics. Journal of Industrial Textiles, 40(1), 49-64. https://doi.org/10.1177/1528083709357975

Islam, S.R., Yu, W., & Naveed, T. (2019). Influence of silica aerogels on fabric structural feature for thermal isolation properties of weft-knitted spacer fabrics. Journal of Engineered Fibers and Fabrics, 14. https://doi.org/10.1177/1558925019866446

Jhanji, Y., Gupta, D., & Kothari, V.K. (2015). Thermo-physiological properties of polyester-cotton plated fabrics in relation to fibre linear density and yarn type. Fashion and Textiles, 2, 1-14. https://doi.org/10.1186/s40691-015-0041-x

Jhanji, Y., Gupta, D., & Kothari, V.K. (2018). Thermal and mass transport properties of polyester-cotton plated fabrics in relation to back layer fibre profiles and face layer yarn types. The Journal of The Textile Institute, 109(5), 669-676. https://doi.org/10.1080/00405000.2017.1363948

Jitendra Ajmeri, S.B. (2013). Comparative Analysis of The Thermal Comfort properties of Knitted fabrics made of Cotton and Modal fibres.

Kabir, S.M. F., Uluturk, I., Pang, R., Khadse, N., Stapleton, S.E., & Park, J.H. (2023). Structure-Property Investigation of Knit Patterns on Thermal Comfort: A Holistic Approach. ACS Applied Engineering Materials, 1(5), 1455-1466. https://doi.org/10.1021/acsaenm.3c00143

Kanat, Z.E., Özdil, N., & Marmaralı, A. (2014). [Prediction of thermal resistance of the knitted fabrics in wet state by using multiple regression analysis]. Textile and Apparel, 24(3), 291-297.

Karaca, E., Kahraman, N., Omeroglu, S., & Becerir, B. (2012). Effects of Fiber Cross Sectional Shape and Weave Pattern on Thermal Comfort Properties of Polyester Woven Fabrics. Fibres and Textiles in Eastern Europe, 92.

Khalil, A., Tesinova, P., & Aboalasaad, A. (2021). Thermal comfort properties of cotton/spandex single jersey knitted fabric. Industria Textila, 72, 244-249. https://doi.org/10.35530/IT.072.03.1760

Li, Y. (2001). The science of clothing comfort. Textile Progress, 31(1-2), 1-135. https://doi.org/10.1080/00405160108688951

Marmaralı, A., & Sevgi, M. (2023). Study on the Comfort Properties of Knitted Fabrics Produced from Conventional and Sustainable Cotton and Polyester Fibres. Tekstilec, 66, 8-12. https://doi.org/10.14502/tekstilec.66.2023063

Matusiak, M. (2006). Investigation of the Thermal Insulation Properties of Multilayer Textiles. Fibres & Textiles in Eastern Europe.

Maurya, S.K., Somkuwar, V.U., Das, A., Kumar, N., & Kumar, B. (2024). Electrothermal Characterization of Series- and Parallel-Based Heating Textiles with Insulation Layers. ACS Applied Electronic Materials, 6(5), 3227-3236. https://doi.org/10.1021/acsaelm.4c00055

Mazedul Islam, Ali Azam Rokon, Maniruzzaman Chowdhury Rubel, Minhaz Ahmed, Ariful Islam. (2014). Investigation on Comfort Properties of Conventional Cotton and Organic Cotton of Knitted Fabric Structures. https://doi.org/10.13189/mst.2014.020303

Mishra, R., Jamshaid, H., Yosfani, S.H. S., Hussain, U., Nadeem, M., Petru, M., ... Muller, M. (2021). Thermo physiological comfort of single jersey knitted fabric derivatives. Fashion and Textiles, 8(1), 40. https://doi.org/10.1186/s40691-021-00266-5

Mishra, R., Militky, J., & Venkataraman, M. (2019). 7 - Nanoporous materials. In R. Mishra & J. Militky (Eds.), Nanotechnology in Textiles (pp. 311-353): Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102609-0.00007-9

Nawaz, N., Troynikov, O., & Watson, C. (2011). Thermal Comfort Properties of Knitted Fabrics Suitable for Skin Layer of Protective Clothing Worn in Extreme Hot Conditions. Advanced Materials Research, 331, 184-189. https://doi.org/10.4028/www.scientific.net/AMR.331.184

Necef, Ö.K., Birkocak, D.T., Kılıç, A., Boz, S., Abreu, M.J., & Öndoğan, Z. (2023). Investigating the Effect of Recycled Cotton Included Fabrics on the Thermal Behaviour by Using a Female Thermal Manikin. Autex Research Journal, 23(3), 388-394. https://doi.org/10.2478/aut-2022-0020

Nilgün Özdil, A.M., Arzu Marmaralı, Serap Dönmez Kretzschmar. (2006). Effect of yarn properties on thermal comfort of knitted fabrics. International Journal of Thermal Sciences, 46(2007), 1318-1322. https://doi.org/10.1016/j.ijthermalsci.2006.12.002

Oglakcioglu, N. (2014). Design of functional knitted fabrics for medical corsets with high clothing comfort characteristics, Journal of Industrial Textiles, 45(5), 1009-1025. https://doi.org/10.1177/1528083714551438

Oglakcioglu, N., & Marmaralı, A. (2007). Thermal comfort properties of some knitted structures. Fibres & Textiles in Eastern Europe, 15, 94-96.

Onofrei, E., Rocha, A.M., & Catarino, A. (2011). The Influence of Knitted Fabrics' Structure on the Thermal and Moisture Management Properties. Journal of Engineered Fibers and Fabrics, 6(4), https://doi.org/10.1177/155892501100600403

Pascoe, D.D., Shanley, L.A., & Smith, E.W. (1994). Clothing and Exercise. Sports Medicine, 18(1), 46-47. https://doi.org/10.2165/00007256-199418010-00005

Pragnesh Shah, Bansal, A., & Singh, R.K. (2018). Life Cycle Assessment of Organic, BCI and Conventional Cotton: A Comparative Study of Cotton Cultivation Practices in India. In: Benetto, E., Gericke, K., Guiton, M. (eds) Designing Sustainable Technologies, Products and Policies. Springer, Cham. https://doi.org/10.1007/978-3-319-66981-6_8

Puszkarz, A.K., Machnowski, W., & Błasińska, A. (2020). Modeling of thermal performance of multilayer protective clothing exposed to radiant heat. Heat and Mass Transfer, 56, 1767-1775. https://doi.org/10.1007/s00231-020-02820-1

S.A. Hosseini Ravandi, & Valizadeh, M. (2011). 2 - Properties of fibers and fabrics that contribute to human comfort. InImproving comfort in clothing (pp. 61-78). Woodhead Publishing. https://doi.org/10.1533/9780857090645.1.61

Salopek Čubrić, I., Potočić Matković, V.M., Pavlović, Ž., & Pavko Čuden, A. (2022). Material and Structural Functionalization of Knitted Fabrics for Sportswear. Materials, 15(9), 3306. https://doi.org/10.3390/ma15093306

Shou, Q., Zhu, X., & Wang, J. (2024). An Investigation on the Thermal and Antibacterial Properties and Comprehensive Performance of New Graphene Knitted Fabrics. Fibers and Polymers, 25(7), 2543-2554. https://doi.org/10.1007/s12221-024-00583-8

Slater, K. (1986). Discussion paper the assessment of comfort. The Journal of The Textile Institute, 77(3), 157-171. https://doi.org/10.1080/00405008608658406

Stankovic, S., Popović, D., & Poparic, G. (2019). Thermal properties of directionally oriented polymer fibrous materials as a function of fibre arrangement at mesoscopic level. Thermal Science, 23, 105-105. https://doi.org/10.2298/TSCI181011105S

Stanković, S.B., Pavlović, S., Bizjak, M., Popović, D.M., & Poparić, G.B. (2022). Thermal Design Method for Optimization of Dry Heat Transfer through Hemp-Based Knitted Fabrics. Journal of Natural Fibers, 19(15), 12155-12167. https://doi.org/10.1080/15440478.2022.2052393

Stanković, S.B., Popović, D.M., & Poparić, G.B. (2008). Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer Testing, 27, 41-48. https://doi.org/10.1016/j.polymertesting.2007.08.003

Subburaayasaran, A.S., Sampath Kumar, S.K., Vasanth Kumar, D., Ramachandran, T., Prakash, C., & Vijayakumar, H.L. (2022). Comparative Studies on Thermal Comfort Properties of Eri Silk, Wool/Eri Silk, Cotton, and Micro-denier Acrylic Double-layered Knitted Fabrics. Journal of Natural Fibers, 19(15), 11449-11457. https://doi.org/10.1080/15440478.2022.2025982

Sun, C., Fan, J., Wu, H., Wu, Y.S., & Wan, X. (2013). Cold protective clothing with reflective nano-fibrous interlayers for improved comfort. International Journal of Clothing Science and Technology, 25, 380-388. https://doi.org/10.1108/IJCST-06-2012-0034

Venkataraman, M., Mishra, R.K., & Militký, J. (2017). Comparative Analysis of High Performance Thermal Insulation Materials. https://doi.org/10.15406/jteft.2017.02.00062

Vries, D.A. D. (1987). The theory of heat and moisture transfer in porous media revisited. International Journal of Heat and Mass Transfer, 30, 1343-1350. https://doi.org/10.1016/0017-9310(87)90166-9

Yang, Y., Zhang, W., Liu, Z., & Zhang, P. (2023). Thermal comfort properties of bi-layer knitted fabrics made up of polyester yarns and nylon yarns with varied specification. International Journal of Clothing Science and Technology, 35(3), 435-453. https://doi.org/10.1108/IJCST-06-2022-0079

Ziaei, M., Ghane, M., Hasani, H., & Saboonchi, A. (2018). Investigation into the effect of fabric structure on surface temperature distribution in weft-knitted fabrics using thermal imaging technique. Thermal Science, 290-290. https://doi.org/10.2298/TSCI180811290Z

Ziegler, S., & Kucharska-Kot, J. (2006). Estimation of the Overall Heat-transfer Coefficient Through a Textile Layer. Fibres & Textiles in Eastern Europe.

Zupin, Ž., Hladnik, A., & Dimitrovski, K. (2012). Prediction of one-layer woven fabrics air permeability using porosity parameters. Textile Research Journal, 82, 117-128. https://doi.org/10.1177/0040517511424529

Show more Show less