Tannin-modified soybean protein concentrate for wood adhesive


  • Leandro Esposito Instituto de Investigaciones en Ciencia y Tecnología de Materiales. (INTEMA); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Nacional de Mar del Plata (UNMdP) https://orcid.org/0000-0003-0852-6392
  • Emiliano Manuel Ciannamea Instituto de Investigaciones en Ciencia y Tecnología de Materiales. (INTEMA); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Nacional de Mar del Plata (UNMdP) https://orcid.org/0000-0001-6982-1550
  • Ignacio Solaberrieta Instituto de Investigaciones en Ciencia y Tecnología de Materiales. (INTEMA); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Nacional de Mar del Plata (UNMdP) https://orcid.org/0000-0002-9587-6325
  • Juan Carlos Piter Grupo de Estudio de Maderas (GEMA); Universidad Tecnológica Nacional https://orcid.org/0000-0001-7473-7994
  • Roxana Alejandra Ruseckaite Instituto de Investigaciones en Ciencia y Tecnología de Materiales. (INTEMA); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Nacional de Mar del Plata (UNMdP) https://orcid.org/0000-0002-7409-5546
  • Pablo Marcelo Stefani Instituto de Investigaciones en Ciencia y Tecnología de Materiales. (INTEMA); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Nacional de Mar del Plata (UNMdP) https://orcid.org/0000-0002-8140-4415




soybean protein concentrate, mimosa tannin, rheology properties, wettability, shear strength


Soybean protein concentrate (SPC) modified with condensed mimosa tannin (CT) were employed as eco-friendly and formaldehyde-free adhesives for glued-wood joints. Eucalyptus grandis wood boards free of knots and cracks were used as substrate. Thermogravimetric analysis (TGA) showed that tannin provided higher thermal stability to the adhesive, which allowed expanding the temperature range for hot pressing. Apparent viscosity and dynamic angle contact were measured to evaluate the influence of tannin content on rheological behaviour and the wettability process. A classic shear-thinning behaviour was observed for all adhesives. Apparent viscosity and equilibrium contact angle reached a maximum value for low CT content. This effect was attributed to the existence of associative interactions between CT and SPC. Bonding quality parameters (wood failure percentage and shear strength) of the glued-wood joints were measured according to EN 302-1:2004 standard. 1 % CT w/w on SPC adhesive showed the best performance for dry conditions. These adhesives were suitable for glued-wood joints for indoor environments.


Download data is not yet available.

Author Biography

Juan Carlos Piter, Grupo de Estudio de Maderas (GEMA); Universidad Tecnológica Nacional

Departamento de Ingeniería Civil, Facultad Regional Concepción del Uruguay


Aydin, I., & Colakoglu, G. (2007). Variation in surface roughness, wettability and some plywood properties after preservative treatment with boron compounds. Building and Environment, 42(11), 3837-3840. https://doi.org/10.1016/j.buildenv.2006.11.009

Cheng, E., Sun, X., (2006) Effects of wood-surface roughness, adhesive viscosity and processing pressure on adhesion strength of protein adhesives. Journal of Adhesion Science and Technology 20, 997-1017. https://doi.org/10.1163/156856106777657779

Ciannamea, E. M., Stefani, P. M., & Ruseckaite, R. A. (2010). Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresource Technology, 101(2), 818-825. https://doi.org/10.1016/j.biortech.2009.08.084

Ciannamea, E. M., Martucci, J. F., Stefani, P. M., Ruseckaite, R. A. (2012). Bonding Quality of Chemically-Modified Soybean Protein Concentrate-Based Adhesives in Particleboards from Rice Husks. Journal of the American Oil Chemists' Society, 89(9), 1733-1741. https://doi.org/10.1007/s11746-012-2058-2

Ciannamea E M, Marin D C, Ruseckaite R A and Stefani P M (2017) Particleboard based on rice husk: effect of binder content and processing conditions J. Renew. Mater 5 19-22. https://doi.org/10.7569/JRM.2017.634125

Chalapud, M. C.; Herdt, M.; Nicolao, E. S.; Ruseckaite, R. A.; Ciannamea, E. M.; Stefani, P. M. (2020). Biobased particleboards based on rice husk and soy proteins: Effect of the impregnation with tung oil on the physical and mechanical behavior. Constr Build Mater. 230: 116996. https://doi.org/10.1016/j.conbuildmat.2019.116996

Damodaran, S.; Zhu, D. (2016) A formaldehyde-free water-resistant soy flour-based adhesive for plywood. J. Am. Oil. Chem. Soc. 93, 1311-1318. https://doi.org/10.1007/s11746-016-2866-x

de Freitas, V., & Mateus, N. (2012). Protein/polyphenol interactions: past and present contributions. Mechanisms of astringency perception. Current Organic Chemistry, 16(6), 724-746. https://doi.org/10.2174/138527212799958002

FAO (2019) http://www.fao.org/faostat/es/#data/QC

Ghahri, S., Pizzi, A., Mohebby, B., Mirshokraie, A., & Mansouri, H. R. (2017). Soy-based, tannin-modified plywood adhesives. The Journal of Adhesion, 94(3), 218-237. https://doi.org/10.1080/00218464.2016.1258310

Ghahri, S., Pizzi, A., Mohebby, B., Mirshoktaie, A., Mansouri, H. R. (2018). Improving water resistance of soy-based adhesive by vegetable tannin. Journal of Polymers and the Environment, 26(5), 1881-1890. https://doi.org/10.1007/s10924-017-1090-6

Ghahri, S.; Chen, X.; Pizzi,A.; Hajihassani, R.; Papadopoulos (2021) A.N. Natural Tannins as New Cross-Linking Materials for Soy-Based Adhesives. Polymers, 13, 595. https://doi.org/10.3390/polym13040595

Hagenimana, A.; Ding X.; Gu W.Y. (2007), Steady state flow behaviors of extruded blend of rice flour and soy protein concentrate, Food Chemistry, 101, 241 - 247. https://doi.org/10.1016/j.foodchem.2006.01.043

Hojilla-Evangelista, M. P. (2010). Adhesion properties of plywood glue containing soybean meal as an extender. Journal of the American Oil Chemists' Society, 87(9), 1047-1052. https://doi.org/10.1007/s11746-010-1586-x

Hunt, C. G.; Frihart, C. R.; Dunky, M.; Rohumaa, A. (2018). Understanding wood bonds-going beyond what meets the eye: a critical review. Reviews of Adhesion and Adhesives, 6(4), 369-440. https://doi.org/10.7569/RAA.2018.097312

Jang, Y., Li, K. (2015). An All-Natural Adhesive for Bonding Wood. Journal of the American Oil Chemists' Society, 92(3), 431-438. https://doi.org/10.1007/s11746-015-2610-y

Khosravi, S., Nordqvist, P., Khabbaz, F., Öhman, C., Bjurhager, I., & Johansson, M. (2015). Wetting and film formation of wheat gluten dispersions applied to wood substrates as particle board adhesives. European Polymer Journal, 67, 476-482. https://doi.org/10.1016/j.eurpolymj.2014.11.034

Leiva, P., Ciannamea, E., Ruseckaite, R. A., & Stefani, P. M. (2007). Medium-density particleboards from rice husks and soybean protein concentrate. Journal of Applied Polymer Science, 106(2), 1301-1306. https://doi.org/10.1002/app.26545

Lin, H., & Gunasekaran, S. (2010). Cow blood adhesive: Characterization of physicochemical and adhesion properties. International Journal of Adhesion and Adhesives, 30(3), 139-144. https://doi.org/10.1016/j.ijadhadh.2009.10.003

Liu C, Zhang Y, Li X, Luo J, Gao Q, Li J,(2017) Green bio-thermoset resins derived from soy protein isolate and condensed tannins, Industrial Crops and Products, 108, 363-370. https://doi.org/10.1016/j.indcrop.2017.06.057

Mo, X., Cheng, E., Wang, D., & Sun, X. S. (2003). Physical properties of medium-density wheat straw particleboard using different adhesives. Industrial Crops and Products, 18(1), 47-53. https://doi.org/10.1016/S0926-6690(03)00032-3

Nicolao, E.; Leiva, P.; Chalapud, M.; Ruseckaite, R.; Ciannamea, E.; Stefani, P. (2020). Flexural and tensile properties of biobased rice husk-jute-soybean protein particleboards. J. Build. Eng.: 101261. https://doi.org/10.1016/j.jobe.2020.101261

Nordqvist, P., Nordgren, N., Khabbaz, F., & Malmström, E. (2013). Plant proteins as wood adhesives: Bonding performance at the macro-and nanoscale. Industrial Crops and Products, 44, 246-252. https://doi.org/10.1016/j.indcrop.2012.11.021

Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein-phenolic interactions and associated changes. Food Research International, 51(2), 954-970. https://doi.org/10.1016/j.foodres.2013.02.009

Peña, C., De la Caba, K., Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101(17), 6836-6842. https://doi.org/10.1016/j.biortech.2010.03.112

Ping, L., Pizzi, A., Guo, Z. D., & Brosse, N. (2012). Condensed tannins from grape pomace: characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive. Industrial Crops and Products, 40, 13-20. https://doi.org/10.1016/j.indcrop.2012.02.039

Piter, J.C, Calvo, C.F., Gonzalez, A.A., Sosa Zitto, M.A., Stefani, P.M. Torrán, E.A. Villalba D.I. (2007) Resistencia a cizalladura en juntas de eucalyptus grandis y pinus elliottii del noreste de argentina encoladas con adhesivo estructural Floresta, 37, 231-237. https://doi.org/10.5380/rf.v37i2.8653

Solt, P., Konnerth,J., Gindl-Altmutter, W., Kantner, W., Moser, J., Mitter, R., Hendrikus, van Herwijnen, W.G. (2019) Technological performance of formaldehyde-free adhesive alternatives for particleboard industry,International Journal of Adhesion and Adhesives, 94, 99-131. https://doi.org/10.1016/j.ijadhadh.2019.04.007

Song, F., Tang, D.-L., Wang, X.-L., & Wang, Y.-Z. (2011). Biodegradable Soy Protein Isolate-Based Materials: A Review. Biomacromolecules, 12(10), 3369-3380. https://doi.org/10.1021/bm200904x

Wang,Y., Mo, X., Sun, X., & Wang, D.(2007) Soy Protein Adhesion Enhanced by Glutaraldehyde Crosslink. Journal of Applied Polymer Science, 104, 130-136. https://doi.org/10.1002/app.24675

Wang, C., Wu, J. (2012). Preparation and characterization of adhesive from spent hen proteins. International Journal of Adhesion and Adhesives, 36, 8-14. https://doi.org/10.1016/j.ijadhadh.2012.04.003

Xu, H.N., Shen, Q.Y., Ouyang,X.K., Yang L.Y. Wetting of soy protein adhesives modified by urea on wood Surfaces. Eur. J. Wood Prod. 70, 11-16 (2012). https://doi.org/10.1007/s00107-010-0502-2