Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding
DOI:
https://doi.org/10.4995/jarte.2021.15727Keywords:
blends, halloysite nanotubes, PE-g-MA, compatibilityAbstract
In this study was analyzed the effect of three different compatibilizers polyethylene-graft-maleic anhydride (PE-g-MA), unmodified halloysite nanotubes (HNTs), and HNTs treated by silanization with (3-glycidyloxypropyl) trimethoxysilane (GLYMO) (silanized HNTs) in blends of bio-based high-density polyethylene (bioPE) and poly(butylene succinate) (PBS) with a weight ratio of (70/30). Each compatibilizer was added in a proportion of (3 phr regarding PBS). Standard samples were obtained by extrusion and subsequent injection molding. The analyzes of the samples were performed by mechanical tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), field emission scanning electron microscopy (FESEM), and wettability (θw). Results suggest that the addition of modified HNTs (silanized HNTs) allowed to obtain better properties than samples compatibilized with unmodified HNTs and PE-g-MA, due to it contributes with the improvement in mechanical properties regarding bioPE/PBS blend, for instance, the tensile modulus and elongation at break increase about 8% and 13%, respectively. In addition, it was determined through FESEM images and that silanized HNTs particles were better dispersed over the matrix, which in fact contribute to the enhance in mechanical properties. TGA showed that silanized HNTs delay the degradation temperature regarding the uncompatibilized blend. While DMTA indicated the reduction in the mobility of the chains in samples with unmodified and modified HNTs. Therefore, it was successfully obtained compatibilized bioPE/PBS blends, which constitutes an interesting option to develop new sustainable polymers.
Downloads
References
Abd El-Rahman, K.M., Ali, S.F.A., Khalil, A., & Kandil, S. (2020). Influence of poly (butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. Journal of Polymer Research, 27(8), 1-21. https://doi.org/10.1007/s10965-020-02217-y
Abdolrasouli, M.H., Nazockdast, H., Sadeghi, G.M.M., & Kaschta, J. (2015). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3). https://doi.org/10.1002/app.41300
Aldas, M., Pavon, C., Ferri, J.M., Arrieta, M.P., & López-Martínez, J. (2021). Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers, 13(9), 1506. https://doi.org/10.3390/ polym13091506
Bezerra, E.B., França, D.C., Morais, D.D.d.S., Siqueira, D.D., Araújo, E.M., & Wellen, R.M.R. (2019). Toughening of bio-PE upon addition of PCL and PEgAA. REM-International Engineering Journal, 72(3), 469-478. https://doi.org/10.1590/0370-44672018720027
Bezerra, E.B., França, D.C.d., Morais, D.D.d.S., Silva, I.D.d.S., Siqueira, D.D., Araújo, E.M., & Wellen, R.M.R. (2019). Compatibility and characterization of Bio-PE/PCL blends. Polímeros, 29(2). https://doi.org/10.1590/0104-1428.02518
Carli, L.N., Daitx, T.S., Soares, G.V., Crespo, J.S., & Mauler, R.S. (2014). The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Applied Clay Science, 87, 311-319. https://doi.org/10.1016/j. clay.2013.11.032
Chrissafis, K., Paraskevopoulos, K., Tsiaoussis, I., & Bikiaris, D. (2009). Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. Journal of Applied Polymer Science, 114(3), 1606-1618. https://doi.org/10.1002/app.30750
Darshan, T., Veluri, S., Kartik, B., Yen-Hsiang, C., & Fang-Chyou, C. (2019). Poly (butylene succinate)/high density polyethylene blend-based nanocomposites with enhanced physical properties–Selectively localized carbon nanotube in pseudo-double percolated structure. Polymer Degradation and Stability, 163, 185-194. https://doi.org/10.1016/j. polymdegradstab.2019.03.009
de Oliveira, A.G., Moreno, J.F., de Sousa, A.M.F., Escócio, V.A., Guimarães, M.J.d.O.C., & da Silva, A.L.N. (2020). Composites based on high-density polyethylene, polylactide and calcium carbonate: effect of calcium carbonate nanoparticles as co-compatibilizers. Polymer Bulletin, 77(6), 2889-2904. https://doi.org/10.1007/s00289-019-02887-9
Du, M., Guo, B., & Jia, D. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). European Polymer Journal, 42(6), 1362-1369. https://doi.org/10.1016/j.eurpolymj.2005.12.006
Ferri, J.M., Garcia-Garcia, D., Rayón, E., Samper, M.D., & Balart, R. (2020). Compatibilization and characterization of polylactide and biopolyethylene binary blends by non-reactive and reactive compatibilization approaches. Polymers, 12(6), 1344. https://doi.org/10.3390/polym12061344
Frankland, S., Caglar, A., Brenner, D., & Griebel, M. (2002). Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube− polymer interfaces. The Journal of Physical Chemistry B, 106(12), 3046-3048.
Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018a). Improvement of mechanical and thermal properties of poly (3-hydroxybutyrate)(PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. https://doi.org/10.1016/j.clay.2018.06.042
Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018b). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. https://doi.org/10.1016/j.eurpolymj.2018.04.036
Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). https://doi.org/10.1002/app.43940
Hassan, E., Wei, Y., Jiao, H., & Muhuo, Y. (2013). Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. Journal of fiber Bioengineering and Informatics, 6(1), 85-94. https://doi.org/10.3993/jfbi03201308
Hassan, M.E.S., Bai, J., & Dou, D.-Q. (2019). Biopolymers; Definition, Classification and Applications. Egyptian Journal of Chemistry, 62(9), 1725-1737. https://doi.org/10.21608/ejchem.2019.6967.1580
Jorda, M., Montava-Jorda, S., Balart, R., Lascano, D., Montanes, N., & Quiles-Carrillo, L. (2019). Functionalization of partially bio-based poly (ethylene terephthalate) by blending with fully bio-based poly (amide) 10, 10 and a glycidyl methacrylate-based compatibilizer. Polymers, 11(8), 1331. https://doi.org/10.3390/polym11081331
Krishnaiah, P., Ratnam, C.T., & Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135, 583-595. https://doi.org/10.1016/j.clay.2016.10.046
Krishnan, A.K., & George, K. (2014). Polymer blend nanocomposites: effect of mercapto silane modified kaolin clay on the thermal properties of Polypropylene/Polystyrene blend. Polymers for advanced technologies, 25(9), 955-962. https://doi.org/10.1002/pat.3333
Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2019). Optimization of maleinized linseed oil loading as a biobased compatibilizer in poly (butylene succinate) composites with almond shell flour. Materials, 12(5), 685. https://doi.org/10.3390/ma12050685
Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly (Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. https://doi.org/10.3390/ma11112179
Liu, L., Yu, J., Cheng, L., Qu, W. (2009). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40(5), 669-674. https://doi. org/10.1016/j.compositesa.2009.03.002
Liu, L., Yu, J., Cheng, L., Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90-94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013
Lochab, B., Varma, I., & Bijwea, J. (2012). Sustainable polymers derived from naturally occurring materials. Advances in Materials Physics and Chemistry, 2(4), 221-225. https://doi.org/10.4236/ampc.2012.24B056
Montava-Jorda, S., Chacon, V., Lascano, D., Sanchez-Nacher, L., & Montanes, N. (2019). Manufacturing and characterization of functionalized aliphatic polyester from poly (lactic acid) with halloysite nanotubes. Polymers, 11(8), 1314. https://doi.org/10.3390/polym11081314
Nuñez, K., Rosales, C., Perera, R., Villarreal, N., Pastor, J. (2012). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. https://doi.org/10.1002/ pen.22168
Pal, P., Kundu, M.K., Malas, A., & Das, C.K. (2014). Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. Journal of Applied Polymer Science, 131(1). https://doi.org/10.1002/app.39587
Peres, A.M., & Oréfice, R.L. (2020). Effect of incorporation of Halloysite nanotubes on the structure and properties of lowdensity polyethylene/thermoplastic starch blend. Journal of Polymer Research, 27(8), 1-10. https://doi.org/10.1007/ s10965-020-02185-3
PlasticsEurope. (2020). Plastics - The Facts 2020. An analysis of European plastics production, demand and waste data.
Platnieks, O., Gaidukovs, S., Barkane, A., Sereda, A., Gaidukova, G., Grase, L.,… Skute, M. (2020). Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies. Polymers, 12(7), 1472. https://doi.org/10.3390/polym12071472
Pöllänen, M., Pirinen, S., Suvanto, M., & Pakkanen, T.T. (2011). Influence of carbon nanotube–polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene. Composites Science and Technology, 71(10), 1353-1360. https://doi.org/10.1016/j.compscitech.2011.05.009
Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2019). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. https://doi.org/10.1002/app.47396
Rafiee, F., Otadi, M., Goodarzi, V., Khonakdar, H.A., Jafari, S.H., Mardani, E., & Reuter, U. (2016). Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides. Composites Part B: Engineering, 103, 122-130. https://doi.org/10.1016/j.compositesb.2016.08.013
Riechers, M., Fanini, L., Apicella, A., Galván, C.B., Blondel, E., Espiña, B., . . . Pereira, T.R. (2021). Plastics in our ocean as transdisciplinary challenge. Marine Pollution Bulletin, 164, 112051. https://doi.org/10.1016/j.marpolbul.2021.112051
Rojas-Lema, S., Torres-Giner, S., Quiles-Carrillo, L., Gomez-Caturla, J., Garcia-Garcia, D., & Balart, R. (2021a). On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed BioBased High-Density Polyethylene Films. Antioxidants, 10(1), 14. https://doi.org/10.3390/antiox10010014
Rojas-Lema, S., Ivorra-Martinez, J., Lascano, D., Garcia-Garcia, D., & Balart, R. (2021b). Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering, 2100196. https://doi.org/10.1002/mame.202100196
Samper-Madrigal, M.D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J.M. (2015). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. https://doi.org/10.1007/s10853-014-8647-8
Schmitt, H., Prashantha, K., Soulestin, J., Lacrampe, M., & Krawczak, P. (2012). Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydrate Polymers, 89(3), 920-927. https://doi. org/10.1016/j.carbpol.2012.04.037
Sharma, S., Singh, A.A., Majumdar, A., & Butola, B.S. (2019). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971-8983. https://doi.org/10.1007/s10853-019-03521-9
Siracusa, V., & Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (ethylene terephthalate)(Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641
Tanniru, M., Yuan, Q., & Misra, R. (2006). On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47(6), 2133-2146. https://doi.org/10.1016/j.polymer.2006.01.063
Tecchio, P., Freni, P., De Benedetti, B., & Fenouillot, F. (2016). Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production, 112, 316-325. https://doi.org/10.1016/j.jclepro.2015.07.090
Tsiropoulos, I., Faaij, A.P., Lundquist, L., Schenker, U., Briois, J.F., & Patel, M.K. (2015). Life cycle impact assessment of bio-based plastics from sugarcane ethanol. Journal of Cleaner Production, 90, 114-127. https://doi.org/10.1016/j.jclepro.2014.11.071
Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of silica and PCC nanofillers as compatibilizers in immiscible PLA/LDPE blends. Paper presented at the POLYCHAR 22 World Forum on Advanced Materials.
Yang, Y., Chen, Y., Leng, F., Huang, L., Wang, Z., & Tian, W. (2017). Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Preprints, 7(12), 1215.
Zhu, Z., He, H., Xue, B., Zhan, Z., Wang, G., & Chen, M. (2018). Morphology, thermal, mechanical properties and rheological behavior of biodegradable poly (butylene succinate)/poly (lactic acid) in-situ submicrofibrillar composites. Materials, 11(12), 2422. https://doi.org/10.3390/ma11122422
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licencse