Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding

Authors

DOI:

https://doi.org/10.4995/jarte.2021.15727

Keywords:

blends, halloysite nanotubes, PE-g-MA, compatibility

Abstract

In this study was analyzed the effect of three different compatibilizers polyethylene-graft-maleic anhydride (PE-g-MA), unmodified halloysite nanotubes (HNTs), and HNTs treated by silanization with (3-glycidyloxypropyl) trimethoxysilane (GLYMO) (silanized HNTs) in blends of bio-based high-density polyethylene (bioPE) and poly(butylene succinate) (PBS) with a weight ratio of (70/30). Each compatibilizer was added in a proportion of (3 phr regarding PBS). Standard samples were obtained by extrusion and subsequent injection molding. The analyzes of the samples were performed by mechanical tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), field emission scanning electron microscopy (FESEM), and wettability (θw). Results suggest that the addition of modified HNTs (silanized HNTs) allowed to obtain better properties than samples compatibilized with unmodified HNTs and PE-g-MA, due to it contributes with the improvement in mechanical properties regarding bioPE/PBS blend, for instance, the tensile modulus and elongation at break increase about 8% and 13%, respectively. In addition, it was determined through FESEM images and that silanized HNTs particles were better dispersed over the matrix, which in fact contribute to the enhance in mechanical properties. TGA showed that silanized HNTs delay the degradation temperature regarding the uncompatibilized blend. While DMTA indicated the reduction in the mobility of the chains in samples with unmodified and modified HNTs. Therefore, it was successfully obtained compatibilized bioPE/PBS blends, which constitutes an interesting option to develop new sustainable polymers.

Downloads

Download data is not yet available.

References

Abd El-Rahman, K.M., Ali, S.F.A., Khalil, A., & Kandil, S. (2020). Influence of poly (butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. Journal of Polymer Research, 27(8), 1-21. https://doi.org/10.1007/s10965-020-02217-y

Abdolrasouli, M.H., Nazockdast, H., Sadeghi, G.M.M., & Kaschta, J. (2015). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3). https://doi.org/10.1002/app.41300

Aldas, M., Pavon, C., Ferri, J.M., Arrieta, M.P., & López-Martínez, J. (2021). Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers, 13(9), 1506. https://doi.org/10.3390/ polym13091506

Bezerra, E.B., França, D.C., Morais, D.D.d.S., Siqueira, D.D., Araújo, E.M., & Wellen, R.M.R. (2019). Toughening of bio-PE upon addition of PCL and PEgAA. REM-International Engineering Journal, 72(3), 469-478. https://doi.org/10.1590/0370-44672018720027

Bezerra, E.B., França, D.C.d., Morais, D.D.d.S., Silva, I.D.d.S., Siqueira, D.D., Araújo, E.M., & Wellen, R.M.R. (2019). Compatibility and characterization of Bio-PE/PCL blends. Polímeros, 29(2). https://doi.org/10.1590/0104-1428.02518

Carli, L.N., Daitx, T.S., Soares, G.V., Crespo, J.S., & Mauler, R.S. (2014). The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Applied Clay Science, 87, 311-319. https://doi.org/10.1016/j. clay.2013.11.032

Chrissafis, K., Paraskevopoulos, K., Tsiaoussis, I., & Bikiaris, D. (2009). Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. Journal of Applied Polymer Science, 114(3), 1606-1618. https://doi.org/10.1002/app.30750

Darshan, T., Veluri, S., Kartik, B., Yen-Hsiang, C., & Fang-Chyou, C. (2019). Poly (butylene succinate)/high density polyethylene blend-based nanocomposites with enhanced physical properties–Selectively localized carbon nanotube in pseudo-double percolated structure. Polymer Degradation and Stability, 163, 185-194. https://doi.org/10.1016/j. polymdegradstab.2019.03.009

de Oliveira, A.G., Moreno, J.F., de Sousa, A.M.F., Escócio, V.A., Guimarães, M.J.d.O.C., & da Silva, A.L.N. (2020). Composites based on high-density polyethylene, polylactide and calcium carbonate: effect of calcium carbonate nanoparticles as co-compatibilizers. Polymer Bulletin, 77(6), 2889-2904. https://doi.org/10.1007/s00289-019-02887-9

Du, M., Guo, B., & Jia, D. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). European Polymer Journal, 42(6), 1362-1369. https://doi.org/10.1016/j.eurpolymj.2005.12.006

Ferri, J.M., Garcia-Garcia, D., Rayón, E., Samper, M.D., & Balart, R. (2020). Compatibilization and characterization of polylactide and biopolyethylene binary blends by non-reactive and reactive compatibilization approaches. Polymers, 12(6), 1344. https://doi.org/10.3390/polym12061344

Frankland, S., Caglar, A., Brenner, D., & Griebel, M. (2002). Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube− polymer interfaces. The Journal of Physical Chemistry B, 106(12), 3046-3048.

Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018a). Improvement of mechanical and thermal properties of poly (3-hydroxybutyrate)(PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. https://doi.org/10.1016/j.clay.2018.06.042

Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018b). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. https://doi.org/10.1016/j.eurpolymj.2018.04.036

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). https://doi.org/10.1002/app.43940

Hassan, E., Wei, Y., Jiao, H., & Muhuo, Y. (2013). Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. Journal of fiber Bioengineering and Informatics, 6(1), 85-94. https://doi.org/10.3993/jfbi03201308

Hassan, M.E.S., Bai, J., & Dou, D.-Q. (2019). Biopolymers; Definition, Classification and Applications. Egyptian Journal of Chemistry, 62(9), 1725-1737. https://doi.org/10.21608/ejchem.2019.6967.1580

Jorda, M., Montava-Jorda, S., Balart, R., Lascano, D., Montanes, N., & Quiles-Carrillo, L. (2019). Functionalization of partially bio-based poly (ethylene terephthalate) by blending with fully bio-based poly (amide) 10, 10 and a glycidyl methacrylate-based compatibilizer. Polymers, 11(8), 1331. https://doi.org/10.3390/polym11081331

Krishnaiah, P., Ratnam, C.T., & Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135, 583-595. https://doi.org/10.1016/j.clay.2016.10.046

Krishnan, A.K., & George, K. (2014). Polymer blend nanocomposites: effect of mercapto silane modified kaolin clay on the thermal properties of Polypropylene/Polystyrene blend. Polymers for advanced technologies, 25(9), 955-962. https://doi.org/10.1002/pat.3333

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2019). Optimization of maleinized linseed oil loading as a biobased compatibilizer in poly (butylene succinate) composites with almond shell flour. Materials, 12(5), 685. https://doi.org/10.3390/ma12050685

Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly (Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. https://doi.org/10.3390/ma11112179

Liu, L., Yu, J., Cheng, L., Qu, W. (2009). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40(5), 669-674. https://doi. org/10.1016/j.compositesa.2009.03.002

Liu, L., Yu, J., Cheng, L., Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90-94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013

Lochab, B., Varma, I., & Bijwea, J. (2012). Sustainable polymers derived from naturally occurring materials. Advances in Materials Physics and Chemistry, 2(4), 221-225. https://doi.org/10.4236/ampc.2012.24B056

Montava-Jorda, S., Chacon, V., Lascano, D., Sanchez-Nacher, L., & Montanes, N. (2019). Manufacturing and characterization of functionalized aliphatic polyester from poly (lactic acid) with halloysite nanotubes. Polymers, 11(8), 1314. https://doi.org/10.3390/polym11081314

Nuñez, K., Rosales, C., Perera, R., Villarreal, N., Pastor, J. (2012). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. https://doi.org/10.1002/ pen.22168

Pal, P., Kundu, M.K., Malas, A., & Das, C.K. (2014). Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. Journal of Applied Polymer Science, 131(1). https://doi.org/10.1002/app.39587

Peres, A.M., & Oréfice, R.L. (2020). Effect of incorporation of Halloysite nanotubes on the structure and properties of lowdensity polyethylene/thermoplastic starch blend. Journal of Polymer Research, 27(8), 1-10. https://doi.org/10.1007/ s10965-020-02185-3

PlasticsEurope. (2020). Plastics - The Facts 2020. An analysis of European plastics production, demand and waste data.

Platnieks, O., Gaidukovs, S., Barkane, A., Sereda, A., Gaidukova, G., Grase, L.,… Skute, M. (2020). Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies. Polymers, 12(7), 1472. https://doi.org/10.3390/polym12071472

Pöllänen, M., Pirinen, S., Suvanto, M., & Pakkanen, T.T. (2011). Influence of carbon nanotube–polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene. Composites Science and Technology, 71(10), 1353-1360. https://doi.org/10.1016/j.compscitech.2011.05.009

Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2019). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. https://doi.org/10.1002/app.47396

Rafiee, F., Otadi, M., Goodarzi, V., Khonakdar, H.A., Jafari, S.H., Mardani, E., & Reuter, U. (2016). Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides. Composites Part B: Engineering, 103, 122-130. https://doi.org/10.1016/j.compositesb.2016.08.013

Riechers, M., Fanini, L., Apicella, A., Galván, C.B., Blondel, E., Espiña, B., . . . Pereira, T.R. (2021). Plastics in our ocean as transdisciplinary challenge. Marine Pollution Bulletin, 164, 112051. https://doi.org/10.1016/j.marpolbul.2021.112051

Rojas-Lema, S., Torres-Giner, S., Quiles-Carrillo, L., Gomez-Caturla, J., Garcia-Garcia, D., & Balart, R. (2021a). On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed BioBased High-Density Polyethylene Films. Antioxidants, 10(1), 14. https://doi.org/10.3390/antiox10010014

Rojas-Lema, S., Ivorra-Martinez, J., Lascano, D., Garcia-Garcia, D., & Balart, R. (2021b). Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering, 2100196. https://doi.org/10.1002/mame.202100196

Samper-Madrigal, M.D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J.M. (2015). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. https://doi.org/10.1007/s10853-014-8647-8

Schmitt, H., Prashantha, K., Soulestin, J., Lacrampe, M., & Krawczak, P. (2012). Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydrate Polymers, 89(3), 920-927. https://doi. org/10.1016/j.carbpol.2012.04.037

Sharma, S., Singh, A.A., Majumdar, A., & Butola, B.S. (2019). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971-8983. https://doi.org/10.1007/s10853-019-03521-9

Siracusa, V., & Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (ethylene terephthalate)(Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641

Tanniru, M., Yuan, Q., & Misra, R. (2006). On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47(6), 2133-2146. https://doi.org/10.1016/j.polymer.2006.01.063

Tecchio, P., Freni, P., De Benedetti, B., & Fenouillot, F. (2016). Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production, 112, 316-325. https://doi.org/10.1016/j.jclepro.2015.07.090

Tsiropoulos, I., Faaij, A.P., Lundquist, L., Schenker, U., Briois, J.F., & Patel, M.K. (2015). Life cycle impact assessment of bio-based plastics from sugarcane ethanol. Journal of Cleaner Production, 90, 114-127. https://doi.org/10.1016/j.jclepro.2014.11.071

Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of silica and PCC nanofillers as compatibilizers in immiscible PLA/LDPE blends. Paper presented at the POLYCHAR 22 World Forum on Advanced Materials.

Yang, Y., Chen, Y., Leng, F., Huang, L., Wang, Z., & Tian, W. (2017). Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Preprints, 7(12), 1215.

Zhu, Z., He, H., Xue, B., Zhan, Z., Wang, G., & Chen, M. (2018). Morphology, thermal, mechanical properties and rheological behavior of biodegradable poly (butylene succinate)/poly (lactic acid) in-situ submicrofibrillar composites. Materials, 11(12), 2422. https://doi.org/10.3390/ma11122422

Downloads

Published

2021-07-16

Issue

Section

Articles