Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant

Santiago Sánchez, Victor Hidalgo, Martin Velasco, Diana Puga, P. Amparo López-Jiménez, Modesto Pérez Sánchez


The present paper focuses on the selection of parameters that maximize electrical energy production of a horizontal axis wind turbine using Python programming language. The study takes as reference turbines of Villonaco wind field in Ecuador. For this aim, the Blade Element Momentum (BEM) theory was implemented, to define rotor geometry and power curve. Furthermore, wind speeds were analyzed using the Weibull probability distribution and the most probable speed was 10.50 m/s. The results were compared with mean annual energy production of a Villonaco’s wind turbine to validate the model. Turbine height, rated wind speed and rotor radius were the selected parameters to determine the influence in generated energy. Individual increment in rotor radius and rated wind speed cause a significant increase in energy produced. While the increment in turbine’s height reduces energy generated by 0.88%.


parametric study; wind turbine; Python; Weibull; energy

Full Text:



Adaramola, M. (2014). Wind turbine technology: Principles and design. Apple Academic Press, Inc.

Arconel. (2015). Ecuador posee un 51,78% de energía renovable.

Bakırcı, M., & Yılmaz, S. (2018). Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal, 21(6), 1128-1142.

Biadgo, A.M., & Aynekulu, G. (2017). Aerodynamic design of horizontal axis wind turbine blades. FME Transactions, 45(4), 647-660.

Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind Energy Handbook. In Wind Energy Handbook (First edit). Wiley.

Carta González, J.A., Calero Pérez, R., Colmenar Santos, A., & Castro Gil, M.A. (2009). Centrales de energías renovables: Generación eléctrica con energías renovables. Pearson Educación S.A.

Cochancela, J., & Astudillo, P. (2012). Análisis energético de centrales eólicas. In Universidad de Cuenca.

Corporación Eléctrica del Ecuador. (2015). Informe de rendición de cuentas 2014 Unidad de Negocio GEN-SUR.

Corporación Eléctrica del Ecuador. (2016a). Central Eólica Villonaco genera el 152% de lo planificado CE-LEC EPGENSUR.

Corporación Eléctrica del Ecuador. (2016b). Informe de rendición de cuentas 2015 Unidad de Negocio GENSUR.

Corporación Eléctrica del Ecuador. (2017). Informe de Rendición de Cuentas 2016 Unidad de Negocio GENSUR.

Corporación Eléctrica del Ecuador. (2018). Informe de rendición de cuentas 2017 Unidad de Negocio GENSUR.

Corporación Eléctrica del Ecuador. (2019a). Informe de rendición de cuentas 2018 Unidad de Negocio GENSUR.

Corporación Eléctrica del Ecuador. (2019b). Producción anual de la Central Eólica Villonaco.

Dehouck, V., Lateb, M., Sacheau, J., & Fellouah, H. (2018). Application of the BEM Theory to Design HAWT Blades. Journal of Solar Energy Engineering, Transactions of the ASME, 140(1), 014501.

Dereje, G., & Sirahbizu, B. (2019). Design and Analysis of 2MW Horizontal Axis Wind Turbine Blade. International Journal of Innovative Science, Engineering & Technology, 6(5).

El Khchine, Y., & Sriti, M. (2018). Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal axis wind turbine blade (HAWT). Technische Mechanik, 38(2), 191-202.

Fuglsang, P., Bak, C., Gaunaa, M., & Antoniou, I. (2004). Design and verification of the Risø-B1 airfoil family for wind turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 126(4), 1002-1010.

Ge, M., Fang, L., & Tian, D. (2015). Influence of reynolds number on multi-objective aerodynamic design of a wind turbine blade. PLoS ONE, 10(11), 1-25.

Goldwind. (2015). Goldwind 1.5MW.

Gul, M., Tai, N., Huang, W., Nadeem, M.H., & Yu, M. (2019). Assessment of wind power potential and economic analysis at Hyderabad in Pakistan: Powering to local communities using wind power. Sustainability, 11(5), 1391.

Hansen, M.O.L. (2008). Aerodynamics of Wind Turbines (Second ed, Vol. 53, Issue 9). Earthscan.

Hidalgo, V., Luo, X.W., Escaler, X., Ji, B., & Aguinaga, A. (2015). Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. Journal of Hydrodynamics, 27(6), 815-823.

Instituto Nacional de Eficiencia Energética y Energías Renovables. (2014). Análisis del comportamiento de un parque eólico en condiciones extremas.

International Energy Agency. (2019). Renewables - World Energy Outlook 2019.

Jamieson, P. (2018). Innovation in Wind Turbine Design (Second ed.). Wiley.

Khaled, M., Mohamed Ibrahim, M., ElSayed Abdel Hamed, H., & Abdel Gawad, A.F. (2017). Aerodynamic Design and Blade Angle Analysis of a Small Horizontal-Axis Wind Turbine. American Journal of Modern Energy, 3(2), 23-27.

Lanzafame, R., & Messina, M. (2010). Horizontal axis wind turbine working at maximum power coefficient continuously. Renewable Energy, 35(1), 301-306.

Lee, J.T., Kim, H.G., Kang, Y.H., & Kim, J.Y. (2019). Determining the optimized hub height of wind turbine using the wind resource map of South Korea. Energies, 12(15), 2949.

Letcher, T.M. (2017). Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. Elsevier.

Mahmood, F.H., Resen, A.K., & Khamees, A.B. (2019). Wind characteristic analysis based on Weibull distribution of AlSalman site, Iraq. Energy Reports, 6(September), 79-87.

Mamadaminov, U.M. (2013). Review of Airfoil Structure for Wind Turbine Blades. Department of Electrical Engineering and Renewable Energy REE, 515., September 2013, 1-8.

Manwell, J.F., McGowan, J.G., & Rogers, A.L. (2009). Wind energy explained: theory, design and application (Second ed.). John Wiley & Sons.

Massachusetts Institute of Technology. (2013). Xfoil.

Mathew, S., & Philip, G.S. (2011). Advances in Wind Energy Conversion Technology. Springer.

Ministerio de Electricidad y Energía Renovable. (2013). Atlas Eólico del Ecuador con fines de generación eléctrica.

Mohammadi, M., Mohammadi, A., & Farahat, S. (2016). A new method for horizontal axis wind turbine (HAWT) blade optimization. International Journal of Renewable Energy Development, 5(1), 1-8.

Najafian Ashrafi, Z., Ghaderi, M., & Sedaghat, A. (2015). Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control. Energy Conversion and Management, 93, 349-356.

Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1-11.

Rehman, S., Alam, M.M., Alhems, L.M., & Rafique, M.M. (2018). Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement-A Review. Energies, 11(3).

Renewable Energy World. (2019). Wind Power Technology.

Ritchie, H., & Roser, M. (2017). Renewable Energy. Our World in Data. Saint-Drenan, Y.M., Besseau, R., Jansen, M., Staffell, I., Troccoli, A., Dubus, L., Schmidt, J., Gruber, K., Simões, S.G., &

Heier, S. (2019). A parametric model for wind turbine power curves incorporating environmental conditions. Renewable Energy, 157, 754-768.

Takeyeldein, M.M., Lazim, T.M., Nik Mohd, N.A.R., Ishak, I.S., & Ali, E.A. (2019). Wind turbine design using thin airfoil SD2030. Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 6(2), 114-123.

Topaloǧlu, F., & Pehlivan, H. (2018). Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP. Advances in Meteorology, 2018.

Viscosidad del aire. (2012).

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

This journal is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

e-ISSN: 2695-8821