Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant
DOI:
https://doi.org/10.4995/jarte.2021.15056Keywords:
parametric study, wind turbine, Python, Weibull, energyAbstract
The present paper focuses on the selection of parameters that maximize electrical energy production of a horizontal axis wind turbine using Python programming language. The study takes as reference turbines of Villonaco wind field in Ecuador. For this aim, the Blade Element Momentum (BEM) theory was implemented, to define rotor geometry and power curve. Furthermore, wind speeds were analyzed using the Weibull probability distribution and the most probable speed was 10.50 m/s. The results were compared with mean annual energy production of a Villonaco’s wind turbine to validate the model. Turbine height, rated wind speed and rotor radius were the selected parameters to determine the influence in generated energy. Individual increment in rotor radius and rated wind speed cause a significant increase in energy produced. While the increment in turbine’s height reduces energy generated by 0.88%.
Downloads
References
Adaramola, M. (2014). Wind turbine technology: Principles and design. Apple Academic Press, Inc. https://doi.org/10.1016/s0038-092x(97)82047-6
Arconel. (2015). Ecuador posee un 51,78% de energía renovable. https://www.regulacionelectrica.gob.ec/ecuador-posee-un-5155-de-energia-renovable/%0A
Bakırcı, M., & Yılmaz, S. (2018). Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal, 21(6), 1128-1142. https://doi.org/10.1016/j.jestch.2018.05.006
Biadgo, A.M., & Aynekulu, G. (2017). Aerodynamic design of horizontal axis wind turbine blades. FME Transactions, 45(4), 647-660. https://doi.org/10.5937/fmet1704647M
Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind Energy Handbook. In Wind Energy Handbook (First edit). Wiley. https://doi.org/10.1002/9781119992714.ch9
Carta González, J.A., Calero Pérez, R., Colmenar Santos, A., & Castro Gil, M.A. (2009). Centrales de energías renovables: Generación eléctrica con energías renovables. Pearson Educación S.A.
Cochancela, J., & Astudillo, P. (2012). Análisis energético de centrales eólicas. In Universidad de Cuenca. http://dspace.ucuenca.edu.ec/jspui/bitstream/123456789/5022/1/Tesis.pdf
Corporación Eléctrica del Ecuador. (2015). Informe de rendición de cuentas 2014 Unidad de Negocio GEN-SUR. https://www.celec.gob.ec/gensur/index.php
Corporación Eléctrica del Ecuador. (2016a). Central Eólica Villonaco genera el 152% de lo planificado CE-LEC EPGENSUR. https://www.celec.gob.ec/gensur/index.php/67-central-eolica-villonaco-genera-el-152-de-lo-planificado
Corporación Eléctrica del Ecuador. (2016b). Informe de rendición de cuentas 2015 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php
Corporación Eléctrica del Ecuador. (2017). Informe de Rendición de Cuentas 2016 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php
Corporación Eléctrica del Ecuador. (2018). Informe de rendición de cuentas 2017 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php
Corporación Eléctrica del Ecuador. (2019a). Informe de rendición de cuentas 2018 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php
Corporación Eléctrica del Ecuador. (2019b). Producción anual de la Central Eólica Villonaco. https://www.celec.gob.ec/gensur/index.php/cev/central-eolica-villonaco-en-cifras
Dehouck, V., Lateb, M., Sacheau, J., & Fellouah, H. (2018). Application of the BEM Theory to Design HAWT Blades. Journal of Solar Energy Engineering, Transactions of the ASME, 140(1), 014501. https://doi.org/10.1115/1.4038046
Dereje, G., & Sirahbizu, B. (2019). Design and Analysis of 2MW Horizontal Axis Wind Turbine Blade. International Journal of Innovative Science, Engineering & Technology, 6(5).
El Khchine, Y., & Sriti, M. (2018). Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal axis wind turbine blade (HAWT). Technische Mechanik, 38(2), 191-202. https://doi.org/10.24352/UB.OVGU-2018-028
Fuglsang, P., Bak, C., Gaunaa, M., & Antoniou, I. (2004). Design and verification of the Risø-B1 airfoil family for wind turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 126(4), 1002-1010. https://doi.org/10.1115/1.1766024
Ge, M., Fang, L., & Tian, D. (2015). Influence of reynolds number on multi-objective aerodynamic design of a wind turbine blade. PLoS ONE, 10(11), 1-25. https://doi.org/10.1371/journal.pone.0141848
Goldwind. (2015). Goldwind 1.5MW. https://www.goldwindamericas.com/15-mw-pmdd
Gul, M., Tai, N., Huang, W., Nadeem, M.H., & Yu, M. (2019). Assessment of wind power potential and economic analysis at Hyderabad in Pakistan: Powering to local communities using wind power. Sustainability, 11(5), 1391. https://doi.org/10.3390/su11051391
Hansen, M.O.L. (2008). Aerodynamics of Wind Turbines (Second ed, Vol. 53, Issue 9). Earthscan.
Hidalgo, V., Luo, X.W., Escaler, X., Ji, B., & Aguinaga, A. (2015). Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. Journal of Hydrodynamics, 27(6), 815-823. https://doi.org/10.1016/S1001-6058(15)60544-3
Instituto Nacional de Eficiencia Energética y Energías Renovables. (2014). Análisis del comportamiento de un parque eólico en condiciones extremas.
International Energy Agency. (2019). Renewables - World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019/renewables#abstract
Jamieson, P. (2018). Innovation in Wind Turbine Design (Second ed.). Wiley. https://doi.org/10.1002/9781119137924
Khaled, M., Mohamed Ibrahim, M., ElSayed Abdel Hamed, H., & Abdel Gawad, A.F. (2017). Aerodynamic Design and Blade Angle Analysis of a Small Horizontal-Axis Wind Turbine. American Journal of Modern Energy, 3(2), 23-27. https://doi.org/10.11648/j.ajme.20170302.12
Lanzafame, R., & Messina, M. (2010). Horizontal axis wind turbine working at maximum power coefficient continuously. Renewable Energy, 35(1), 301-306. https://doi.org/10.1016/j.renene.2009.06.020
Lee, J.T., Kim, H.G., Kang, Y.H., & Kim, J.Y. (2019). Determining the optimized hub height of wind turbine using the wind resource map of South Korea. Energies, 12(15), 2949. https://doi.org/10.3390/en12152949
Letcher, T.M. (2017). Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. Elsevier. https://doi.org/10.1016/B978-0-12-809451-8.00001-1
Mahmood, F.H., Resen, A.K., & Khamees, A.B. (2019). Wind characteristic analysis based on Weibull distribution of AlSalman site, Iraq. Energy Reports, 6(September), 79-87. https://doi.org/10.1016/j.egyr.2019.10.021
Mamadaminov, U.M. (2013). Review of Airfoil Structure for Wind Turbine Blades. Department of Electrical Engineering and Renewable Energy REE, 515., September 2013, 1-8.
Manwell, J.F., McGowan, J.G., & Rogers, A.L. (2009). Wind energy explained: theory, design and application (Second ed.). John Wiley & Sons. https://doi.org/10.1002/9781119994367
Massachusetts Institute of Technology. (2013). Xfoil. https://web.mit.edu/drela/Public/web/xfoil/
Mathew, S., & Philip, G.S. (2011). Advances in Wind Energy Conversion Technology. Springer. https://doi.org/10.1007/978-3-540-88258-9
Ministerio de Electricidad y Energía Renovable. (2013). Atlas Eólico del Ecuador con fines de generación eléctrica.
Mohammadi, M., Mohammadi, A., & Farahat, S. (2016). A new method for horizontal axis wind turbine (HAWT) blade optimization. International Journal of Renewable Energy Development, 5(1), 1-8. https://doi.org/10.14710/ijred.5.1.1-8
Najafian Ashrafi, Z., Ghaderi, M., & Sedaghat, A. (2015). Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control. Energy Conversion and Management, 93, 349-356. https://doi.org/10.1016/j.enconman.2015.01.048
Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1-11. https://doi.org/10.1186/2251-6832-3-7
Rehman, S., Alam, M.M., Alhems, L.M., & Rafique, M.M. (2018). Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement-A Review. Energies, 11(3). https://doi.org/10.3390/en11030506
Renewable Energy World. (2019). Wind Power Technology. https://www.renewableenergyworld.com/types-of-renewable-energy/wind-power-tech/#gref
Ritchie, H., & Roser, M. (2017). Renewable Energy. Our World in Data. https://ourworldindata.org/renewable-energy Saint-Drenan, Y.M., Besseau, R., Jansen, M., Staffell, I., Troccoli, A., Dubus, L., Schmidt, J., Gruber, K., Simões, S.G., &
Heier, S. (2019). A parametric model for wind turbine power curves incorporating environmental conditions. Renewable Energy, 157, 754-768. https://doi.org/10.1016/j.renene.2020.04.123
Takeyeldein, M.M., Lazim, T.M., Nik Mohd, N.A.R., Ishak, I.S., & Ali, E.A. (2019). Wind turbine design using thin airfoil SD2030. Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 6(2), 114-123. https://doi.org/10.5109/2321003
Topaloǧlu, F., & Pehlivan, H. (2018). Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP. Advances in Meteorology, 2018. https://doi.org/10.1155/2018/2716868
Viscosidad del aire. (2012). https://didactica.fisica.uson.mx/tablas/viscosidad.htm
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licencse