Influence of plasticizers on the compostability of polylactic acid

Marina P. Arrieta

Abstract

Poly(lactic acid) (PLA) has gained considerable attention as an interesting biobased and biodegradable polymer for film for food packaging applications, due to its many advantages such as biobased nature, high transparency and inherent biodegradable/compostable character. With the dual objective to improve PLA processing performance and to obtain flexible materials, plasticizer are use as strategy for extending PLA applications as compostable film for food packaging applications. Several plasticizers (i.e.: citrate esters, polyethylene glycol (PEG), oligomeric lactic acid (OLA), etc.) as well as essential oils and maleinized and/or epoxidized seed oils are widely used for flexible PLA film production. This article reviews the most relevant compostable PLA-plasticized flexible film formulations with an emphasis on plasticizer effect on the compostability rate of PLA polymeric matrix with the aim to get information of the possibility to use plasticized PLAbased formulatios as compostable films for sustainable industrial packaging production.


Keywords

biobased polymers; biodegradable polymers; polylactic acid; plasticizers; compostability

Full Text:

PDF

References

Abdelwahab, M.A., Flynn, A., Chiou, B.S., Imam, S., Orts, W., Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. https://doi.org/10.1016/j.polymdegradstab.2012.05.036

Agüero, A., Morcillo, M.C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D.,... Fenollar, O. (2019). Study of the influence of the reprocessing cycles on the final properties of polylactide pieces obtained by injection molding. Polymers, 11(12), 1908. https://doi.org/10.3390/polym11121908

Aragón-Gutierrez, A., Arrieta, M.P., López-González, M., Fernández-García, M., López, D. (2020). Hybrid Biocomposites Based on Poly (Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 13(21), 4910. https://doi.org/10.3390/ma13214910

Arrieta, M.P., Fortunati, E., Dominici, F., López, J., Kenny, J.M. (2015). Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121(0), 265-275. https://doi.org/10.1016/j.carbpol.2014.12.056

Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M. (2014a). Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107(0), 16-24.https://doi.org/10.1016/j.carbpol.2014.02.044

Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M. (2014b). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. https://doi.org/10.1016/j.polymdegradstab.2014.05.010

Arrieta, M.P., García, A.D., López, D., Fiori, S., Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3). https://doi.org/10.3390/nano9030346

Arrieta, M.P., López, J., Hernández, A., Rayón, E. (2014). Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. https://doi.org/10.1016/j.eurpolymj.2013.11.009

Arrieta, M.P., López, J., López, D., Kenny, J.M., Peponi, L. (2016a). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA-PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290- 301. https://doi.org/10.1016/j.indcrop.2015.12.058

Arrieta, M.P., López, J., López, D., Kenny, J.M., Peponi, L. (2016b). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. https://doi.org/10.1016/j.polymdegradstab.2016.02.027

Arrieta, M.P., López, J., Rayón, E., Jiménez, A. (2014b). Disintegrability under composting conditions of plasticized PLAPHB blends. Polymer Degradation and Stability. https://doi.org/10.1016/j.polymdegradstab.2014.01.034

Arrieta, M.P., Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. https://doi.org/10.1016/j.eurpolymj.2017.02.028

Arrieta, M.P., Peponi, L., López, D., Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. https://doi.org/10.1016/j.indcrop.2017.10.042

Arrieta, M.P., Perdiguero, M., Fiori, S., Kenny, J.M., Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109226

Arrieta, M.P., Samper, M.D., Aldas, M., López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 1008. https://doi.org/10.3390/ma10091008

Arrieta, M.P., Sessini, V., Peponi, L. (2017). Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. European Polymer Journal, 94, 111-124.https://doi.org/10.1016/j.eurpolymj.2017.06.047

Auras, R.A., Harte, B., Selke, S., Hernandez, R. (2003). Mechanical, physical, and barrier properties of poly(lactide) films. Journal of Plastic Film and Sheeting, 19(2), 123-135. https://doi.org/10.1177/8756087903039702

Auras, R., Harte, B., Selke, S.E. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864. https://doi.org/10.1002/mabi.200400043

Balart, J., Montanes, N., Fombuena, V., Boronat, T., Sánchez-Nacher, L. (2018). Disintegration in compost conditions and water uptake of green composites from poly (lactic acid) and hazelnut shell flour. Journal of Polymers and the Environment, 26(2), 701-715. https://doi.org/10.1007/s10924-017-0988-3

Beltrán, F.R., Arrieta, M.P., Gaspar, G., de la Orden, M.U., Urreaga, J.M. (2020). Effect of lignocellulosic nanoparticles extracted from yerba mate (Ilex paraguariensis) on the structural, thermal, optical and barrier properties of mechanically recycled poly(lactic acid). Polymers, 12(8). https://doi.org/10.3390/polym12081690

Beltrán, F.R., Lorenzo, V., de la Orden, M.U., Martínez-Urreaga, J. (2016). Effect of different mechanical recycling processes on the hydrolytic degradation of poly(L-lactic acid). Polymer Degradation and Stability, 133, 339-348. https://doi.org/10.1016/j.polymdegradstab.2016.09.018

Bioplastics, E. (2020). from https://www.european-bioplastics.org/bioplastics/materials/

Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S.,... Kenny, J.M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. https://doi.org/10.1007/s11947-016-1846-3

Burgos, N., Martino, V.P., Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009

Carbonell-Verdu, A., Ferri, J.M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. https://doi.org/10.3144/expresspolymlett.2018.69

Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259.https://doi.org/10.1016/j.eurpolymj.2017.04.013

Carbonell-Verdu, A., Samper, M.D., Garcia-Garcia, D., Sanchez-Nacher, L., Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. https://doi.org/10.1016/j.indcrop.2017.04.050

Fortunati, E., Armentano, I., Iannoni, A., Kenny, J. (2010). Development and thermal behaviour of ternary PLA matrix composites. Polymer Degradation and Stability, 95(11), 2200-2206. https://doi.org/10.1016/j.polymdegradstab.2010.02.034

Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J. (2012a). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 97(10), 2027-2036. https://doi.org/10.1016/j.polymdegradstab.2012.03.027

Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J.M., Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56(1), 77-91. https://doi.org/10.1016/j.eurpolymj.2014.03.030

Fortunati, E., Puglia, D., Santulli, C., Sarasini, F., Kenny, J.M. (2012b). Biodegradation of Phormium tenax/poly(lactic acid) composites. Journal of Applied Polymer Science, 125(SUPPL. 2), E562-E572. https://doi.org/10.1002/app.36839

Garcia-Garcia, D., Carbonell-Verdu, A., Arrieta, M.P., López-Martínez, J., Samper, M.D. (2020). Improvement of PLA film ductility by plasticization with epoxidized karanja oil. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109259

Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

Kale, G., Auras, R., Singh, S.P. (2006). Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 14(3), 317-334. https://doi.org/10.1007/s10924-006-0015-6

Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S.E., Singh, S.P. (2007). Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience, 7(3), 255-277. https://doi.org/10.1002/mabi.200600168

Khabbaz, F., Karlsson, S., Albertsson, A.C. (2000). PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. Journal of Applied Polymer Science, 78(13), 2369-2378. https://doi.org/10.1002/1097-4628(20001220)78:13<2369::AID-APP140>3.0.CO;2-N

Lim, L.T., Auras, R., Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science (Oxford), 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S.,... Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 223. https://doi.org/10.1016/j.carbpol.2019.115131

Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L. (2015). Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 121, 105-115. https://doi.org/10.1016/j.polymdegradstab.2015.08.016

Madhavan, N.K., Nimisha Rajendran, N., Rojan Pappy, J. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092

Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Richert, J., Malinowski, R.,... Kowalczuk, M. (2016). Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 52, 69-76. https://doi.org/10.1016/j.wasman.2016.04.016

Navarro-Baena, I., Marcos-Fernández, A., Fernández-Torres, A., Kenny, J.M., Peponi, L. (2014). Synthesis of PLLA-b-PCLb-PLLA linear tri-block copolymers and their corresponding poly (ester-urethane) s: effect of the molecular weight on their crystallisation and mechanical properties. RSC advances, 4(17), 8510-8524. https://doi.org/10.1039/c3ra44786c

Oyama, H.T., Tanishima, D., Maekawa, S. (2016). Poly(malic acid-co-L-lactide) as a superb degradation accelerator for Poly(l-lactic acid) at physiological conditions. Polymer Degradation and Stability, 134, 265-271. https://doi.org/10.1016/j.polymdegradstab.2016.10.016

Pawlak, F., Aldas, M., Parres, F., López-Martínez, J., Arrieta, M.P. (2020). Silane-functionalized sheep wool fibers from dairy industry waste for the development of plasticized pla composites with maleinized linseed oil for injection-molded parts. Polymers, 12(11), 1-22. https://doi.org/10.3390/polym12112523

Petersson, L., Kvien, I., Oksman, K. (2007). Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11), 2535-2544. https://doi.org/10.1016/j.compscitech.2006.12.012

Plastic Europe. (2019). Plastics - the Facts 2019. An analysis of European plastics production, demand and waste data., from https://www.plasticseurope.org/es/resources/publications/1804-plastics-facts-2019

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., Torres-Giner, S. (2018b). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. https://doi.org/10.1016/j.compositesb.2018.04.017

Quiles-Carrillo, L., Montanes, N., Lagaron, J.M., Balart, R., Torres-Giner, S. (2018a). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. https://doi.org/10.1002/pi.5588

Ramos, M., Fortunati, E., Beltrán, A., Peltzer, M., Cristofaro, F., Visai, L.,... Garrigós, M.C. (2020). Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic Acid)/Thymol/Nanoclay Composites. Polymers, 12(9), 1878. https://doi.org/10.3390/polym12091878

Ramos, M., Fortunati, E., Peltzer, M., Jimenez, A., Kenny, J.M., Garrigós, M.C. (2016). Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 132, 2-10. https://doi.org/10.1016/j.polymdegradstab.2016.05.015

Samper, M.D., Arrieta, M.P., Ferrándiz, S., López, J. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23). https://doi.org/10.1002/app.41161

Samper, M.D., Bertomeu, D., Arrieta, M.P., Ferri, J.M., López-Martínez, J. (2018). Interference of biodegradable plastics in the polypropylene recycling process. Materials, 11(10). https://doi.org/10.3390/ma11101886

Shah, A.A., Hasan, F., Hameed, A., Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005

Shinoda, H., Asou, Y., Kashima, T., Kato, T., Tseng, Y., Yagi, T. (2003). Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone). Polymer Degradation and Stability, 80(2), 241-250. https://doi.org/10.1016/S0141-3910(02)00404-4

Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003

Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1526), 2127-2139. https://doi.org/10.1098/rstb.2008.0289

Sriyapai, P., Chansiri, K., Sriyapai, T. (2018). Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology, 87(2), 290-300. https://doi.org/10.1134/S0026261718020157

UNE-EN ISO. (2016). Plastics - Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test (ISO 20200:2015).

Villegas, C., Arrieta, M.P., Rojas, A., Torres, A., Faba, S., Toledo, M.J.,... Valenzuela, X. (2019). PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 176. https://doi.org/10.1016/j.compositesb.2019.107336

Vink, E.T.H., Rábago, K.R., Glassner, D.A., Gruber, P.R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5

Yagi, H., Ninomiya, F., Funabashi, M., Kunioka, M. (2013). Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polymer Degradation and Stability, 98(6), 1182-1187. https://doi.org/10.1016/j.polymdegradstab.2013.03.010

Abstract Views

487
Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review
Atika Alhanish, Mustafa Abu Ghalia
Biotechnology Progress  year: 2021  
doi: 10.1002/btpr.3210



This journal is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

e-ISSN: 2695-8821    https://doi.org/10.4995/jarte