Social network analysis and supply chain management

Raúl Rodríguez Rodríguez, Ramona D. Leon

Abstract

This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes. 


Keywords

Social network analysis; Supply chain management; Metrics

Full Text:

PDF

References

Bruno, G., Esposito, E., Genovese, A., Simpson, M. (2016). Applying supplier selection methodologies in a multi-stakeholder environment: A case study and a critical assessment. Expert Systems with Applications, 43: 271-285. doi:10.1016/j.eswa.2015.07.016

Chan, F.T., Nayak, A., Raj, R., Chong, A.Y.L., Manoj, T. (2013). An innovative supply chain performance measurement system incorporating research and development (R&D) and marketing policy. Computers & Industrial Engineering , 69: 64-70. doi:10.1016/j.cie.2013.12.015

Gunawan, D.D., Huarng, K.H. (2015). Viral effects of social network and media on consumers ́ purchase intention. Journal of Business Research , 68(11): 2237-2241. doi:10.1016/j.jbusres.2015.06.004

Hanneman, R.A., Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside.

Heidarzade, A., Mahdavi, I., Mahdavi-Amiri, N. (2016). Supplier selection using a clustering method based on a new distance for interval type-2 fuzzy sets: A case study. Applied Soft Computing, 38: 213-231. doi:10.1016/j.asoc.2015.09.029

Holland, P., Leinhardt, J. (1981). An Exponential Family of Probability Distributions for Directed Graphs. Journal of the American Statistical Association, 76(373): 33-50. doi:10.1080/01621459.1981.10477598

Hu, Y. (2013). Hyperlinked actors in the global knowledge communities and diffusion of innovation tools in nascent industrial field. Technovation, 33(2-3): 38-49. doi:10.1016/j.technovation.2012.10.001

Kaplan, R.S., Norton, D.P. (1992). The balanced scorecard. Measures that drive performance. Harvard Business Review, 70(1): 71-9.

Kee-Hung, L., Wong, W.Y., Lee Lam, S. (2015). Sharing environmental management information with supply chain partners and the performance contingencies on environmental munificence. International Journal of Production Economics, 164: 445-453. doi:10.1016/j.ijpe.2014.12.009

Lewin, K. (1936) Principles of Topological Psychology. Martino Fine Books. doi:10.1037/10019-000

Sandru, C. (2012). Epistemic and Methodological aspects of Network Analysis. Bulletin of the Transilvania University of Braşov, 3: 63-74.

Lin, S.W., Lo, L.Y.S. (2015). Mechanisms to motivate knowledge sharing: integrating the reward systems and social network perspectives. Journal of Knowledge Management, 19(2): 212-235. doi:10.1108/JKM-05-2014-0209

Molina-Castillo, F.J., Lopez-Nicolas, C., Soto-Acosta, P. (2012). Interaction effects of media and message on perceived complexity, risk and trust of innovative products. European Management Journal, 30(6): 577–587. doi:10.1016/j.emj.2012.07.005

Shafiee, M., Lotfi, F.H., Saleh, H. (2014). Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach. Applied Mathematical Modelling, 38(21-22): 5092-5112. doi:10.1016/j.apm.2014.03.023

Tajbakhsh, A., Hassini, E. (2015). Data envelopment analysis approach to evaluate sustainability in supply chain networks. Journal of Cleaner Production, 105: 74-85. doi:10.1016/j.jclepro.2014.07.054

Turetken, O., Sharda, R. (2007). Visualization of web spaces: state of the art and future directions. Data Base, 38(3): 51-81. doi:10.1145/1278253.1278260

Verdecho, M.J., Alfaro-Saiz, J.J., Rodriguez-Rodriguez, R., Ortiz-Bas, A. (2012). A multi-criteria approach for managing inter-enterprise collaborative relationships. Omega, 40(3): 249-263. doi:10.1016/j.omega.2011.07.004

Zhu, B., Watts, S., Chen, H. (2010). Visualizing social network concepts. Decision Support Systems, 49(2): 151-161. doi:10.1016/j.dss.2010.02.001

Abstract Views

4229
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Identifying supply risks by mapping the cobalt supply chain
Susan van den Brink, René Kleijn, Benjamin Sprecher, Arnold Tukker
Resources, Conservation and Recycling  vol: 156  first page: 104743  year: 2020  
doi: 10.1016/j.resconrec.2020.104743



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Universitat Politècnica de València

e-ISSN: 2340-4876     ISSN: 2340-5317   https://doi.org/10.4995/ijpme