Fuzzy maintenance costs of a wind turbine pitch control device

Mariana Carvalho, Eusébio Nunes, José Telhada

Abstract

This paper deals with the problem of estimation maintenance costs for the case of the pitch controls system of wind farms turbines. Previous investigations have estimated these costs as (traditional) “crisp” values, simply ignoring the uncertainty nature of data and information available. This paper purposes an extended version of the estimation model by making use of the Fuzzy Set Theory. The results alert decision-makers to consequent uncertainty of the estimations along with their overall level, thus improving the information given to the mainte-nance support system.

Keywords

Wind turbine; Pitch Control; Maintenance cost, Fuzzy sets

Full Text:

PDF

References

Bertling, L., Ackermann, T., Nilsson, J., Ribrant J. (2006). Pre-study on reliability-centered maintenance for wind power systems with focus on condition monitoring systems. Elforsk report 06:39, May 2006.

Buckley, J. J., Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. Physica-Verlag, Heidelberg, New York. doi:10.1007/978-3-7908-1799-7

Carvalho, M., Nunes, E., Telhada, J. (2013a). Maintenance costs of a pitch control device of a wind turbine. Proceedings of the World Congress on Engineering 2013, July 3-5, London, 569-574.

Carvalho, M., Nunes, E., Telhada, J. (2013b). State-space characterization and estimation of unavailability costs of a wind turbine. Proceedings of the International Conference on Industrial Engineering and Operation Management 2013, July 10-12, Valladolid, Spain.

Hong, D. H. (2006). Renewal process with T-related fuzzy inter-arrival times and fuzzy rewards. Information Sciences, 176(16): 2386-2395. doi:10.1016/j.ins.2005.06.008

Khanlari, A., Mohammadi, K., Sohrabi, B. (2008). Prioritizing equipments for preventive maintenance (PM) activities using fuzzy rules. Computers & Industrial Engineering, 54(2): 169-184. doi:10.1016/j.cie.2007.07.002

Klir, G. J., Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Englewood Cliffs, NJ, Prentice-Hall.

Morthorst, P. E. (2003). Wind energy, the facts, costs and prices. Risø National Laboratory, Denmark, Vol. 2, 94-110.

Naranjo, E., Sumper, A., Bellmunt, O., Ferre, A., Rojas, M. (2011). Pitch control system design to improve frequency response capability of fixed-speed wind turbine systems. European Transactions on Electrical Power, 21(7): 1984-2006. doi:10.1002/etep.535

Nilsson, J., Bertling, L. (2007). Maintenance management of wind power systems using condition monitoring systems-life cycle cost analysis for two case studies. IEEE Transactions on Energy Conversion, 22(1): 223-229. doi:10.1109/TEC.2006.889623

Nunes, E., Faria, J., Matos, M. (2006). Using fuzzy sets to evaluate the performance of complex systems when parameters are uncertain. Safety and Reliability for Managing Risk. In C. Guedes Soares and E. Zio (Eds.). Proceedings of the ESREL 2006, 3: 2351-2359. Estoril, Portugal, Taylor & Francis Group.

Qiu, Y., Feng, Y., Tavner, P., Richardson, P., Erdos, G., Chen, B. (2012). Wind turbine SCADA alarm analysis for improving reliability. Wind Energy, 15(8): 951-966. doi:10.1002/we.513

Ross, T. J. (1995). Fuzzy Logic with Engineering Applications. McGraw-Hill, Inc.

Sharma, R.K., Kumar, D., Kumar, P. (2008). Fuzzy modelling of system behavior for risk and reliability analysis. International Journal of Systems Science, 39(6): 563-581. doi:10.1080/00207720701717708

Shen, Q., Zhao, R., Tang, W. (2009). Random fuzzy alternating renewal processes. Soft Computing, 13(2): 139-147. doi:10.1007/s00500-008-0307-y

Teresa, H. (2007). Wind turbines: Designing with maintenance in mind. Power Engineering, 111(5): 36(3).

Yuniarto, M. N., Labib, A. W. (2006). Fuzzy adaptive preventive maintenance in a manufacturing control system: a step towards selfmaintenance. International Journal of Production Research, 44(1): 159-180. doi:10.1080/13528160500245723

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning (I, II, III). Information Sciences: I, 8(3): 199-249; II,8(4): 301-357; III, 9(1): 43-80. doi:10.1016/0020-0255(75)90017-1

Abstract Views

1415
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Fuzzy usage pattern in customizing public transport fleet and its maintenance options
H Husniah, L Herdiani, Kusmaya, A K Supriatna
Journal of Physics: Conference Series  vol: 1013  first page: 012186  year: 2018  
doi: 10.1088/1742-6596/1013/1/012186



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Universitat Politècnica de València

e-ISSN: 2340-4876     ISSN: 2340-5317   https://doi.org/10.4995/ijpme