Probabilistic risk analysis in manufacturing situational operation: application of modelling techniques and causal structure to improve safety performance.

Jose Cristiano Pereira, Gilson Brito Alves Lima


The use of probabilistic risk analysis in jet engines manufacturing process is essential to prevent failure. The objective of this study is to present a probabilistic risk analysis model to analyze the safety of this process. The standard risk assessment normally conducted is inadequate to address the risks. To remedy this problem, the model presented in this paper considers the effects of human, software and calibration reliability in the process. Bayesian Belief Network coupled to a Bow Tie diagram is used to identify potential engine failure scenarios. In this context and to meet this objective, an in depth literature research was conducted to identify the most appropriate modeling techniques and an interview were conducted with experts. As a result of this study, this paper presents a model that combines fault tree analysis, event tree analysis and a Bayesian Belief Networks into a single model that can be used by decision makers to identify critical risk factors in order to allocate resources to improve the safety of the system. The model is delivered in the form of a computer assisted decision tool supported by subject expert estimates.


Probabilistic Risk Analysis; Situation Model; Bayesian Belief Net-work

Full Text:



Ale, B.J.M., Bellamy, L.J., Cooke, R.M., Goossens, L.H.J., Hale, A.R., Roelen, A.L.C., Smith, E. (2006). Towards a causal model for air transport safety –an ongoing research project. Safety Science, 44(8): 657-673. doi:10.1016/j.ssci.2006.02.002

Ale, B.J.M., Bellamy, L.J., van der Boom, R., Cooper, J., Cooke, R.M., Goossens, L.H.J., Hale, A.R., Kurowicka, D., Morales, O., Roelen, A.L.C., Spouge, J. (2009). Further development of a Causal model for Air Transport Safety (CATS): Building the mathematical heart. Reliability Engineering & System Safety, 94(9): 1433-1441. doi:10.1016/j.ress.2009.02.024

Beugin, J., Renaux, D., Cauffriez, L. (2007). A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems. Reliability Engineering & System Safety, 92(12): 1686-1700. doi:10.1016/j.ress.2006.09.022

Boring, R.L., Hendrickson, S.M.L., Forester, J.A., Tran, T.Q., Lois, E. (2010). Issues in benchmarking human reliability analysis methods: A literature review. Reliability Engineering & System Safety, 95(6): 591-605. doi:10.1016/j.ress.2010.02.002

Brooker, P. (2011). Experts, Bayesian Belief Networks, rare events and aviation risk estimates. Safety Science, 49(8-9): 1142-1155. doi:10.1016/j.ssci.2011.03.006

Calixto, E., Lima, G.B.A., Firmino, P. R. A. (2013). Comparing SLIM, SPAR-H and Bayesian Network Methodologies. Open Journal of Safety Science and Technology, 3: 31-41. doi:10.4236/ojsst.2013.32004

Čepin, M., He, X. (2006). Development of a method for consideration of dependency between human failure events. In: Soares CG, Zio E, editors. Proceedings of ESREL2006: safety and reliability for managing risk, 285-91.

Čepin, M. (2007). Importance of human contribution within the human reliability analysis (IJS-HRA). Journal of Loss Prevent Process Industry. 21(3): 268-276. doi:10.1016/j.jlp.2007.04.012

Clemen, R.T., Winkler, R.L. (1999). Combining probability distributions from experts in Risk analysis. Risk Analysis, 19(2):187-203. doi:10.1111/j.1539-6924.1999.tb00399.x

Clément, B., Haste, T. Krausmann, E., Dickinson, S., Gyenes, G., Duspiva, J., de Rosa, F., Paci, S., Martin-Fuertes, F., Scholytssek, W., Allelein, H.-J., Güntay, S., Arien, B., Marguet, S., Leskovar, M., Sartmadjiev, A. (2005). Thematic network for a Phebus FPT1 international standard problem (THENPHEBISP). Nuclear Engineering and Design, 235(2-4): 347-357. doi:10.1016/j.nucengdes.2004.08.057

Cooke, R.M. (1991). Experts in uncertainty. Opinion and subjective probability in science. Oxford University Press.

Droguett, E.L., Groen, F., Mosleh, A. (2004). The combined use of data and expert estimates in population variability analysis. Reliability Engineering & System Safety, 83(4): 311-321. doi:10.1016/j.ress.2003.10.007

Esteves, A. da S., Quelhas, O.L.G., Lima, G.B.A. (2005). Process Risk Assessment and Management in a Petroleum Production Nucleus. Petroleum Science and Technology, 23(5-6): 611-639. doi:10.1081/LFT-200032883

Groth, K., Swiler, L.P. (2013). Bridging the gap between HRA research and HRA practice: A Bayesian network version of SPAR-H. Reliability Engineering & System Safety, 115: 33-42. doi:10.1016/j.ress.2013.02.015

Gurrea, V., Alfaro-Saiz, J., Rodríguez, R., Verdechob, M. (2014). Application of fuzzy logic in performance management: a literature review. International Journal of Production Management and Engineering, 2(2): 93-100. doi:10.4995/ijpme.2014.1859

Kumamoto, H., Henley, E.J. (1996). Probabilistic risk assessment and management for engineers and scientists. IEEE Press.

Kumara, S., Sharma, R.K., Chauhan, P. (2014). ISM Approach to Model Offshore Outsourcing Risks. International Journal of Production Management and Engineering, 2(2): 101-111. doi:10.4995/ijpme.2014.2096

Goossens, L.H.J., Cooke, R.M., Hale, A.R., Rodić-Wiersma, Lj. (2008). Fifteen years of expert opinion at TUDelft, Safety Science, 46(2): 234-244. doi:10.1016/j.ssci.2007.03.002

Lahtinen, J., Valkonen, J., Bjorkman, K., Frits, J., Niemelä, I., Heljanko, K. (2012). Model checking of safety-critical software in the nuclear engineering domain. Reliability Engineering & System Safety, 105: 104-113. doi:10.1016/j.ress.2012.03.021

Mahadevan, S., Zhang, R., Smith, N. (2001). Bayesian networks for system reliability reassessment. Structural Safety, 23(3): 231-51. doi:10.1016/S0167-4730(01)00017-0

Marais, K.B., Robichaud, M.R. (2012). Analysis of trends in aviation maintenance risk: An empirical approach. Reliability Engineering & System Safety, 106: 104-118. doi:10.1016/j.ress.2012.06.003

Moieni, P., Spurgin, J.A., Singh, A. (1994). Advances in HRA, methodology. Part I: frameworks, models and data. Reliability Engineering & System Safety, 44(1): 27–55. doi:10.1016/0951-8320(94)90105-8

Mosleh, A., Apostolakis, G. (1986). The assessment of probability distributions from Expert opinions with an application to seismic fragility curves. Risk Analysis, 6(4): 447-461. doi:10.1111/j.1539-6924.1986.tb00957.x

Mosleh, A. (1992). Bayesian modeling of expert-to-expert variability and dependence in estimating rare event frequencies. Reliability Engineering & System Safety, 38(1-2): 47-57. doi:10.1016/0951-8320(92)90104-S

Netjasov, F., Janic, M. (2008). A review of research on risk and safety modelling in civil aviation. Air Transport Management, 14(4): 213-220. doi:10.1016/j.jairtraman.2008.04.008

Nureg. (2001). Fault Tree Handbook Nuclear Regulatory Commission. Nureg.

Pasman, H., William, R. (2013). Bayesian networks make LOPA more effective, QRA more transparent and flexible, and thus safety more definable! Journal of Loss Prevention in the Process Industries, 26(3): 434-442. doi:10.1016/j.jlp.2012.07.016

Pereira, J. C., Lima, G. B. A., Sant’Anna, A. P., Peres, L., Pizzolato, N. (2014). Causal Model for Probabilistic Risk Analysis of Jet Engine Failure in Manufacturing Situational Operation (CAPEMO). International Journal of Engineering Science and Innovative Technology, 3(3): 701-717.

Pereira, J.C., Lima, G.B.A. (2014). Probabilistic Risk Analysis in Manufacturing Situational Operation. Phd Seminar. CIO-ICIEOM-IIIEC 2014. Malaga, Spain.

Petersen, D. (2000). Safety management our strengths & weaknesses. Professional Safety, 16-19.

Podofillini, L., Dang, V.N. (2013). A Bayesian approach to treat expert-elicited probabilities in human reliability analysis model construction. Reliability Engineering & System Safety, 117: 52-64. doi:10.1016/j.ress.2013.03.015

Rausand, M. (2011). Risk Assessment. Theory, Methods and Applications. John Wiley & Sons, Inc. doi:10.1002/9781118281116

Rechenthin, D. (2004). Project safety as a sustainable competitive advantage. Journal of Safety Research, 35(3): 297-308. doi:10.1016/j.jsr.2004.03.012

Roelen, A. (2008). Causal risk models of air transport: Comparison of user needs and model capabilities. Engineering Technische universitat Delft. Thesis submitted for the degree of Doctor, 2008.

Rosqvist, T. (2000). Bayesian aggregation of experts’ judgment on failure intensity. Reliability Engineering & System Safety, 70(3): 283-289. doi:10.1016/S0951-8320(00)00064-8

Weber, P., Medina-Oliva, G., Simon, C., Iung, B. (2012). Overview on Bayesian networks ap-plications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence, 25(4):671-682. doi:10.1016/j.engappai.2010.06.002

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Human reliability analysis and optimization of manufacturing systems through Bayesian networks and human factors experiments: A case study in a flexible intermediate bulk container manufacturing plant
Yaliang Wang, Yangke Ding, Guoda Chen, Shousong Jin
International Journal of Industrial Ergonomics  vol: 72  first page: 241  year: 2019  
doi: 10.1016/j.ergon.2019.05.001

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives- 4.0 International License 

Universitat Politècnica de València

e-ISSN: 2340-4876     ISSN: 2340-5317