An industry maturity model for implementing Machine Learning operations in manufacturing

Miguel Angel Mateo Casalí

https://orcid.org/0000-0001-5086-9378

Spain

Universitat Politècnica de València image/svg+xml

Centro de Investigación en Gestión e Ingeniería de Producción (CIGIP)

Francisco Fraile Gil

https://orcid.org/0000-0003-0852-8953

Spain

Universitat Politècnica de València image/svg+xml

Centro de Investigación en Gestión e Ingeniería de Producción (CIGIP)

Andrés Boza

https://orcid.org/0000-0002-5429-0416

Spain

Universitat Politècnica de València image/svg+xml

Centro de Investigación en Gestión e Ingeniería de Producción (CIGIP)

Artem Nazarenko

https://orcid.org/0000-0003-2435-3970

Portugal

Nova University of Lisbon image/svg+xml

Faculty of Sciences and Technology

|

Accepted: 2023-07-20

|

Published: 2023-07-31

DOI: https://doi.org/10.4995/ijpme.2023.19138
Funding Data

Downloads

Keywords:

Manufacturing Execution System, Zero-defect Manufacturing, Manufacturing Operations, CMM, ISA-95, MLOps, Machine Learning

Supporting agencies:

This research was not funded

Abstract:

The next evolutionary technological step in the industry presumes the automation of the elements found within a factory, which can be accomplished through the extensive introduction of automatons, computers and Internet of Things (IoT) components. All this seeks to streamline, improve, and increase production at the lowest possible cost and avoid any failure in the creation of the product, following a strategy called “Zero Defect Manufacturing”. Machine Learning Operations (MLOps) provide a ML-based solution to this challenge, promoting the automation of all product-relevant steps, from development to deployment. When integrating different machine learning models within manufacturing operations, it is necessary to understand what functionality is needed and what is expected. This article presents a maturity model that can help companies identify and map their current level of implementation of machine learning models.

Show more Show less

References:

Escobar, C., Arinez, J., & Morales-Menéndez, R. (2020). Process-Monitoring-for-Quality-A Step Forward in the Zero. https://doi.org/10.4271/2020-01-1302

Naqa, I., Li, R., & Murphy, M. J. (Eds.). (2015). Machine Learning in Radiation Oncology. Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210(September 2018), 15-26. https://doi.org/10.1016/j.ijpe.2019.01.004

Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. Fifteenth International Conference on ICT and Knowledge Engineering, 1-6. https://doi.org/10.1109/ICTKE.2017.8259629

Psarommatis, F., Prouvost, S., May, G., & Kiritsis, D. (2020). Product Quality Improvement Policies in Industry 4.0: Characteristics, Enabling Factors, Barriers, and Evolution Toward Zero Defect Manufacturing. Frontiers in Computer Science, 2(August), 1-15. https://doi.org/10.3389/fcomp.2020.00026

Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2021). Smart manufacturing scheduling: A literature review. Journal of Manufacturing Systems, 61, 265-287. https://doi.org/10.1016/j.jmsy.2021.09.011

Lindström, J., Kyösti, P., Birk, W., & Lejon, E. (2020). An initial model for zero defect manufacturing. Applied Sciences (Switzerland), 10(13). https://doi.org/10.3390/app10134570

Calvin, T. W. (1983). Quality Control Techniques for 'Zero Defects'. Technical Paper - Society of Manufacturing Engineers, C(3), 323-328. https://doi.org/10.1016/0026-2714(84)90075-1

Jürgen, K. (2007). Manufacturing Execution System - MES.

Fox, M. S., Chionglo, J. F., & Barbuceanu, M. (1993). The Integrated Supply Chain Management Project. Retrieved from https://www.researchgate.net/publication/239033756_The_Integrated_Supply_Chain_Management_Project

Unver, H. O. (2013). An ISA-95-based manufacturing intelligence system in support of lean initiatives. International Journal of Advanced Manufacturing Technology, 65(5-8), 853-866. https://doi.org/10.1007/s00170-012-4223-z

Junín Durán de Leon, A., Cruz Rentería, J. R., Muñoz Zamora, G., García-Alva, S., Gutiérrez-torres, L., & Sánchez Hernández, Z. (2016). Desarrollo de Software basado en el estándar ISA-95.

Finkelstein, A. (1992). A Software Process Immaturity Model, ACM SIGSOFT Software Engineering Notes, 17(4), 22-23. https://doi.org/10.1145/141874.141878

Galan Manuel, J., de la fuente, S., Alonso de Armiño, C., & Alcalde Delgado, R. (2021). 15th International Conference on Industrial Engineering and Industrial Management. Retrieved from https://pressbooks.pub/cioxxv

Show more Show less