A requirement-driven approach for competency-based collaboration in industrial data science projects

Authors

DOI:

https://doi.org/10.4995/ijpme.2024.19123

Keywords:

Industrial Data Science, Data Analytics, Industrial Production, Platform Economy, Competence Development

Abstract

The digitization of learning resources has led to an increase in specialized collaboration platforms across various fields, including the need for manufacturing companies to develop and maintain expertise in Industrial Data Science (IDS). This paper presents an approach to integrating collaborative and competency-based needs specific to industrial data analytics into a functional collaboration platform. We define the unique requirements of IDS projects and translate them into platform features. These features are then implemented and tested in an online platform within a research project, validating their effectiveness in a dynamic value network setting. The platform’s primary innovation lies in its tailored design for IDS project practitioners from diverse domains, ensuring sustainable integration of data analytics in industrial settings. The initial version of this collaborative platform is currently accessible online and undergoing validation.

Downloads

Download data is not yet available.

Author Biographies

Marius Syberg, TU Dortmund University

Institute of Production System

Nikolai West, TU Dortmund University

Institute of Production Systems

Jörn Schwenken, TU Dortmund University

Institute of Production Systems

Rebekka Adams, NEOCOSMO GmbH

-

Jochen Deuse, TU Dortmund University

Institute of Production Systems

Since 2019, he additionally holds a professorship at the University of Technology Sydney (UTS), Faculty of Engineering and Information Technology,  School of Mechanical and Mechatronic Engineering and is Director of the "Centre for Advanced Manufacturing" at UTS since 2020.

References

Acatech (Ed.). (2016). acatech Position. Kompetenzen für Industrie 4.0: Qualifizierungsbedarfe und Lösungsansätze (Competencies for Industry 4.0. Requirements for Qualitifcations and So-lutions). Herbert Utz Verlag GmbH.

Appley, D. G., & Winder, A. E. (1977). An Evolving Definition of Collaboration and Some Implica-tions for the World of Work. The Journal of Applied Behavioral Science, 13(3), 279-291. https://doi.org/10.1177/002188637701300304

Arnold, D., Butschek, S., Steffes, S., & Müller, D. (2016). Digitalisierung am Arbeitsplatz: Bericht, FB468.

Aulkemeier, F., Iacob, M.‑E., & van Hillegersberg, J. (2019). Platform-based collaboration in digital ecosystems. Electronic Markets, 29(4), 597-608. https://doi.org/10.1007/s12525-019-00341-2

Bauer, W., Dworschak, B., & Zaiser, H. (2017). Weiterbildung und Kompetenzentwicklung für die Industrie 4.0 (Education and skills development for Industry 4.0). In B. Vogel-Heuser, T. Bauernhansl, & M. ten Hompel (Eds.), Handbuch Industrie 4.0 Bd.1 (pp. 125-138). Sprin-ger Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45279-0_36

Becker, M. (Ed.). (2010). Berufliche Bildung in Forschung, Schule und Arbeitswelt: Vol. 5. Von der Arbeitsanalyse zur Diagnose beruflicher Kompetenzen: Methoden und methodologische Beiträge aus der Berufsbildungsforschung. Lang. https://doi.org/10.3726/978-3-653-00477-9

Bergmann, B. Kompetenzentwicklung und Berufsarbeit. Waxmann.

Briggs, R., Vreede, G.‑J. de, & Jr, J. (2003). Collaboration Engineering with ThinkLets to Pursue Sustained Success with Group Support Systems. J. Of Management Information Systems, 19, 31-64. https://doi.org/10.1080/07421222.2003.11045743

Chapman et al. (Ed.) (2000). CRISP-DM 1.0: Step-by-step data mining guide.

Chen, Chiang, & Storey (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165. https://doi.org/10.2307/41703503

Derouin, R. E., Fritzsche, B. A., & Salas, E. (2005). E-learning in organizations. Journal of Manage-ment, 31(6), 920-940. https://doi.org/10.1177/0149206305279815

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gameful-ness. In A. Lugmayr, H. Franssila, C. Safran, & I. Hammouda (Eds.), Proceedings of the 15th International Academic MindTrek Conference on Envisioning Future Media Environments - MindTrek '11 (p. 9). ACM Press. https://doi.org/10.1145/2181037.2181040

Deuse, J [Jochen], West, N., & Syberg, M. (2022). Rediscovering scientific management. The evolu-tion from industrial engineering to industrial data science. International Journal of Produc-tion Management and Engineering, 10(1), 1-12. https://doi.org/10.4995/ijpme.2022.16617

Deuse, J [Jochen], Wöstmann, R., Schulte, L., & Panusch, T. (2021). Transdisciplinary competence development for role models in data-driven value creation: The Citizen Data Scientist in the Centre of Industrial Data Science Teams. In W. Sihn & S. Schlund (Eds.), Competence development and learning assistance systems for the data-driven future (pp. 37-58). Goto Verlag. https://doi.org/10.30844/wgab_2021_3

Dietzen, A., Nickolaus, R., Rammstedt, B., & Weiß, R. (Eds.). (2016). Berichte zur beruflichen Bil-dung. Kompetenzorientierung: Berufliche Kompetenzen entwickeln, messen und anerken-nen. W. Bertelsmann Verlag GmbH & Co. KG.

Dobler, M., Etschmann, R., Kugler, P., Meierhofer, J., Olbert-Bock, S., Redzepi, A., Schumacher, J., Thiel, C., & Tietz, R. (2020). Data Science für KMU leicht gemacht. Kreuzlingen. Internati-onale Bodenseehochschule Labs. https://doi.org/10.25924/opus-3505

Eiden, A., Gries, J., Eickhoff, T., & Göbel, J. C. (2020, December 16). Anforderungen an ein Daten-Backend-System zur Unterstützung industrieller Datenanalyse-Anwendungen in digitalen Engineering-Prozessen dynamischer Wertschöpfungsnetzwerke. In Proceedings of the 31st Symposium Design for X (DFX2020) (pp. 81-90). The Design Society. https://doi.org/10.35199/dfx2020.9

Erpenbeck, J., Heyse, V., Meynhardt, T., & Weinberg, J. (2021). Die Kompetenzbiographie: Wege der Kompetenzentwicklung (3. durchgesehene Auflage). Waxmann.

Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discov-ery in Databases. AI Mag, 17, 37-54.

Fischer, M. (2000). Von der Arbeitserfahrung zum Arbeitsprozeßwissen: Rechnergestützte Fachar-beit im Kontext beruflichen Lernens. Leske + Budrich. https://doi.org/10.1007/978-3-663-11783-4

Gorecky, D., Khamis, M., & Mura, K. (2017). Introduction and establishment of virtual training in the factory of the future. International Journal of Computer Integrated Manufacturing, 30(1), 182-190. https://doi.org/10.1080/0951192X.2015.1067918

Grady, R. B., & Caswell, D. L. (1987). Software metrics: Establishing a company-wide program. Prentice-Hall.

Hamari, J., & Koivisto, J. (2015). Why do people use gamification services? International Journal of Information Management, 35(4), 419-431. https://doi.org/10.1016/j.ijinfomgt.2015.04.006

Henke, M., & Kuhn, A. (Eds.). (2017). acatech STUDIE. Kollaboration als Schlüssel zum erfolgrei-chen Transfer von Innovationen: Analyse von Treibern und Hemmnissen in der Automobil-logistik (Collaboration as to the Successful Transfer of Innovations. Analyses of Drivers and Barriers in automotive logistics). Herbert Utz Verlag GmbH. http://web.archive.org/web/20181115005609/ http://www.acatech.de/wp-content/uploads/2018/03/Innokey_acatech_STUDIE_Web.pdf

Hipp, A. (2021). R&D collaborations along the industry life cycle: the case of German photovoltaics manufacturer. Industrial and Corporate Change, 30(3), 564-586. https://doi.org/10.1093/icc/dtaa054

Ismail, A., Truong, H.‑L., & Kastner, W. (2019). Manufacturing process data analysis pipelines: a requirements analysis and survey. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-018-0162-3

Kong, S. C. (2011). An evaluation study of the use of a cognitive tool in a one-to-one classroom for promoting classroom-based dialogic interaction. Computers & Education, 57(3), 1851-1864. https://doi.org/10.1016/j.compedu.2011.04.008

Kühn, A., Joppen, R., Reinhart, F., Röltgen, D., Enzberg, S. von, & Dumitrescu, R. (2018). Analytics Canvas - A Framework for the Design and Specification of Data Analytics Projects. Proce-dia CIRP, 70, 162-167. https://doi.org/10.1016/j.procir.2018.02.031

Lalic, B., Majstorovic, V., Marjanovic, U., Delić, M., & Tasic, N. (2017). The Effect of Industry 4.0 Concepts and E-learning on Manufacturing Firm Performance: Evidence from Transitional Economy. In H. Lödding, R. Riedel, K.-D. Thoben, G. von Cieminski, & D. Kiritsis (Eds.), IFIP advances in information and communication technology. Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufactur-ing (Vol. 513, pp. 298-305). Springer International Publishing. https://doi.org/10.1007/978-3-319-66923-6_35

Lee, W. B., Cheung, C. F., Lau, H., & Choy, K. L. (2003). Development of a Web‐based enterprise collaborative platform for networked enterprises. Business Process Management Journal, 9(1), 46-59. https://doi.org/10.1108/14637150310461396

Mandl, H., & Kopp, B. (2006). Blended Learning: Forschungsfragen und Perspektiven. https://doi.org/10.5282/ubm/epub.905

Mazarov, J., Schmitt, J., Deuse, J [J.], Richter, R., Kühnast-Benedikt, R., & Biedermann, H. (2020). Visualisation in Industrial Data Science projects (Translation): Visualisierung in Industrial Data-Science-Projekten (Original title). Industrie 4.0 Management, 36(6), 63-66.

Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384-1400. https://doi.org/10.1080/00207543.2019.1636323

Moore, J. (2017). Data Visualization in Support of Executive Decision Making. Interdisciplinary Journal of Information, Knowledge, and Management, 12, 125-138. https://doi.org/10.28945/3687

Mullarkey, M. T., Hevner, A. R., Grandon Gill, T., & Dutta, K. (2019). Citizen Data Scientist: A De-sign Science Research Method for the Conduct of Data Science Projects. In B. Tulu, S. Djamasbi, & G. Leroy (Eds.), Lecture Notes in Computer Science. Extending the Boundaries of Design Science Theory and Practice (Vol. 11491, pp. 191-205). Springer International Publishing. https://doi.org/10.1007/978-3-030-19504-5_13

Pisano, G. P. (1990). The R&D Boundaries of the Firm: An Empirical Analysis. Administrative Sci-ence Quarterly, 35(1), 153. https://doi.org/10.2307/2393554

Rauner, F. (Ed.). (2005). Handbuch Berufsbildungsforschung. Bertelsmann. http://www.socialnet.de/rezensionen/isbn.php?isbn=978-3-7639-3167-5

Rosen, Y., & Salomon, G. (2007). The Differential Learning Achievements of Constructivist Tech-nology-Intensive Learning Environments as Compared with Traditional Ones: A Meta-Analysis. Journal of Educational Computing Research, 36, 1-14. https://doi.org/10.2190/R8M4-7762-282U-554J

Sailer, M., & Homner, L. (2020). The Gamification of Learning: a Meta-analysis. Educational Psy-chology Review, 32(1), 77-112. https://doi.org/10.1007/s10648-019-09498-w

Schuh, G., Boos, W., & Völker, M. (2011). Collaboration platforms to enable global service provi-sion in the tooling industry. Production Engineering, 5(1), 9-16. https://doi.org/10.1007/s11740-010-0274-x

Schulz, M., Neuhaus, U., Kaufmann, J., Badura, D., Kuehnel, S., Badwitz, W., Dann, D., Kloker, S., Alekozai, E. M., & Lanquillon, C. Introducing DASC-PM: A Data Science Process Model. In ACIS 2020 Proceedings (Vol. 45). (Original work published 2020)

Smith, M. J., Wedge, R., & Veeramachaneni, K. (2017). FeatureHub: Towards Collaborative Data Science. In 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 590-600). IEEE. https://doi.org/10.1109/DSAA.2017.66

Spath, D. (Ed.). (2007). Webbasierte Open Source-Kollaborationsplattformen: Eine Studie der Fraunhofer Gesellschaft. Fraunhofer IRB Verlag.

Spöttl, G., Gorldt, C., Windelbrandt, L., Grantz, T., & Richter, T. (2016). Industrie 4.0 - Auswirkun-gen auf Aus- und Weiterbildung in der M+E Industrie. Eine bayme vbm Studie, erstellt von der Universität Bremen. Bremen.

Ștefӑnicӑ, F., Abele, S., Walker, F., & Nickolaus, R. (2017). Modeling, Measurement, and Develop-ment of Professional Competence in Industrial-Technical Professions. In M. Mulder (Ed.), Technical and Vocational Education and Training: Issues, Concerns and Prospects. Com-petence-based Vocational and Professional Education (Vol. 23, pp. 843-861). Springer In-ternational Publishing. https://doi.org/10.1007/978-3-319-41713-4_39

Stegmann, K., Wecker, C., Mandl, H., & Fischer, F. (2016). Lehren und Lernen mit digitalen Medien (Teaching and Learning with Digital Media). In R. Tippelt & B. Schmidt-Hertha (Eds.), Handbuch Bildungsforschung (pp. 1-22). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-531-20002-6_42-1

Süptitz, T., Weis, S., & Eymann, T. (2013). Was müssen Virtual Research Environments leisten? - Ein Literaturreview zu den funktionalen und nichtfunktionalen Anforderungen.

West, N., Gries, J., Brockmeier, C., Göbel, J. C., & Deuse, J [Jochen] (2021). Towards integrated Data Analysis Quality: Criteria for the application of Industrial Data Science. In 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI). https://doi.org/10.1109/IRI51335.2021.00024

Wood, L. C., & Reiners, T. (2015). Gamification. In D. Khosrow-Pour (Ed.), Encyclopedia of Infor-mation Science and Technology, Third Edition (pp. 3039-3047). IGI Global. https://doi.org/10.4018/978-1-4666-5888-2.ch297

Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, & Qiang Yang (2021). FATE: An Industrial Grade Plat-form for Collaborative Learning With Data Protection. J. Mach. Learn. Res., 22, 226:1-226:6.

Zahoor, N., Al‐Tabbaa, O., Khan, Z., & Wood, G. (2020). Collaboration and Internationalization of SMEs: Insights and Recommendations from a Systematic Review. International Journal of Management Reviews, 22(4), 427-456. https://doi.org/10.1111/ijmr.12238

Zerdick, A., Picot, A., Schrape, K., Artopé, A., Goldhammer, K., Heger, D. K., Lange, U. T., Vier-kant, E., López-Escobar, E., & Silverstone, R. (2001). Die Internet-Ökonomie: Strategien für die digitale Wirtschaft (3., erweiterte und überarbeitete Auflage). European Communi-cation Council Report. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-56418-5

Zinn, B., Güzel, E., Walker, F., Nickolaus, R., Sari, D., & Hedrich, M. (2015). ServiceLernLab - Ein Lern- und Transferkonzept für (angehende) Servicetechniker im Maschinen- und Anlagen-bau. Advance online publication. https://doi.org/10.48513/joted.v3i2.61 (Journal of Tech-nical Education (JOTED), Bd. 3 Nr. 2 (2015): Journal of Technical Education (JOTED)).

Downloads

Published

2024-01-31

How to Cite

Syberg, M., West, N., Schwenken, J., Adams, R., & Deuse, J. (2024). A requirement-driven approach for competency-based collaboration in industrial data science projects . International Journal of Production Management and Engineering, 12(1), 79–90. https://doi.org/10.4995/ijpme.2024.19123

Issue

Section

Papers

Funding data