A non Parametric Estimation of Service Level in a Discrete Context

Authors

  • Manuel Cardós Carboneras Universitat Politècnica de València
  • Eugenia Babiloni Universitat Politècnica de València
  • Sofíá Estellés Universitat Politècnica de València
  • Ester Guijarro Universitat Politècnica de València

DOI:

https://doi.org/10.4995/ijpme.2014.1857

Keywords:

periodic review, service level, demand distribution

Abstract

An exact method for the estimation of the cycle service level has been proposed for periodic review stock policies in a discrete demand context for any known i.i.d. demand distribution. However, the implementation of this method in real environments has previously to manage some important and eventually cumbersome issues such as: (i) the identification of the appropriate demand distribution and its validation; (ii) the estimation of the parameters of the demand distribution; and (iii) the calculation of temporal aggregates of the demand distribution in order to estimate the expected service level. This paper shows some difficulties linked to these issues and proposes an alternative approach based on the observed demand frequencies, so that these issues are avoided and the accuracy of the service level estimation seems to be improved.

Downloads

Download data is not yet available.

Author Biographies

Manuel Cardós Carboneras, Universitat Politècnica de València

Departamento de Organización de Empresas

Eugenia Babiloni, Universitat Politècnica de València

Departamento de Organización de Empresas

Sofíá Estellés, Universitat Politècnica de València

Departamento de Organización de Empresas

Ester Guijarro, Universitat Politècnica de València

Departamento de Organización de Empresas

References

Cardós, M., Babiloni, E., Palmer, M.E., & Albarracín J.M. 2009. Effects on Undershoots and Lost Sales on the Cycle Service Level for Periodic and Continuous Review Policies. Ieee Transactions on Information Forensics and Security 819-824

Dunsmuir, W.T.M. & Snyder, R.D. 1989. Control of Inventories with Intermittent Demand 1 59. European Journal of Operational Research, 40, (1) 16-21 available from: ISI:A1989U671400002

Janssen, F., Heuts, R., & Kok, T. 1996. On the (R,s,Q) inventory model when demand is modelled as a compound Bernoulli process. European Journal of Operational Research, 104, 423-436 http://dx.doi.org/10.1016/S0377-2217(97)00009-X

Schultz, C.R. 1987. Forecasting and Inventory Control for Sporadic Demand Under Periodic Review 1 77. Journal of the Operational Research Society, 38, (5) 453-458 available from: ISI:A1987H521100009

Silver, E.A., Pyke, D.F., & Peterson, R. 1998. Inventory Management and Production Planning and Scheduling, Third Edition ed. John Wiley & Sons.

Strijbosch, L.W.G., Heuts, R.M.J., & van der Schoot, E.H.M. 2000. A combined forecast - inventory control procedure for spare parts 1 50. Journal of the Operational Research Society, 51, (10) 1184-1192 available from: ISI:000089702100010

Syntetos, A.A. & Boylan, J.E. 2006. On the stock control performance of intermittent demand estimators 1 81. Inter-national Journal of Production Economics, 103, (1) 36-47 available from: ISI:000238785300005

Vereecke, A. & Verstraeten, P. 1994. An Inventory Management Model for An Inventory Consisting of Lumpy Items, Slow Movers and Fast Movers20. International Journal of Production Economics, 35, (1-3) 379-389 available from: ISI:A1994NZ26500050

Yeh, Q.J., Chang, T.P., & Chang, H.C. 1997. An inventory control model with gamma distribution 1 88. Microelec-tronics and Reliability, 37, (8) 1197-1201 available from: ISI:A1997XF22800008

Downloads

Published

2014-01-10

How to Cite

Cardós Carboneras, M., Babiloni, E., Estellés, S., & Guijarro, E. (2014). A non Parametric Estimation of Service Level in a Discrete Context. International Journal of Production Management and Engineering, 2(1), 47–52. https://doi.org/10.4995/ijpme.2014.1857

Issue

Section

Papers