BASA: An improved hybrid bees algorithm for the single machine scheduling with early/tardy jobs
DOI:
https://doi.org/10.4995/ijpme.2023.18077Keywords:
Bees Algorithm, Single Machine Scheduling, Early/Tardy, Simulated Annealing, Meta-heuristicAbstract
In this paper, we present a novel hybrid meta-heuristic by enhancing the Basic Bees Algorithm through the integration of a local search method namely Simulated Annealing and Variable Neighbourhood Search like algorithm. The resulted hybrid bees algorithm (BASA) is used to solve the Single Machine Scheduling Problem with Early/Tardy jobs, where the generated outcomes are compared against the Basic Bees Algorithm (BA), and against some stat-of-the-art meta-heuristics. Computational results reveal that our proposed framework outperforms the Basic Bees Algorithm, and demonstrates a competitive performance compared with some algorithms extracted from the literature.
Downloads
References
Abdul-Razaq, T. S., & Potts, C. N. (1988). Dynamic programming state-space relaxation for single-machine scheduling. Journal of the Operational Research Society, 39(2), 141-152. https://doi.org/10.1057/jors.1988.26
Abdullah, S., & Alzaqebah, M. (2013). A hybrid self-adaptive bees algorithm for examination timetabling problems. Applied Soft Computing, 13(8), 3608-3620. https://doi.org/10.1016/j.asoc.2013.04.010
Baker, K. R., & Scudder, G. D. (1990). Sequencing with earliness and tardiness penalties: a review. Operations research, 38(1), 22-36. https://doi.org/10.1287/opre.38.1.22
Castellani, M., Pham, Q. T., & Pham, D. T. (2012). Dynamic optimisation by a modified bees algorithm. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(7), 956-971. https://doi.org/10.1177/0959651812443462
Dereli, T., & Das, G. S. (2011). A hybrid 'bee (s) algorithm'for solving container loading problems. Applied Soft Computing, 11(2), 2854-2862. https://doi.org/10.1016/j.asoc.2010.11.017
Dowsland, K. A., & Thompson, J. (2012). Simulated annealing. Handbook of natural computing, 1623-1655. https://doi.org/10.1007/978-3-540-92910-9_49
Hansen, P., Mladenović, N., & Moreno Pérez, J. A. (2010). Variable neighbourhood search: methods and applications. Annals of Operations Research, 175(1), 367-407. https://doi.org/10.1007/s10479-009-0657-6
Ho, Y. C., & Pepyne, D. L. (2001). Simple explanation of the no free lunch theorem of optimization. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228) (Vol. 5, pp. 4409-4414). IEEE.
Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
Lara, C., Flores, J. J., & Calderón, F. (2008). Solving a school timetabling problem using a bee algorithm. In Mexican International Conference on Artificial Intelligence (pp. 664-674). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88636-5_63
Lim, C. H., Lim, S., How, B. S., Ng, W. P. Q., Ngan, S. L., Leong, W. D., & Lam, H. L. (2021). A review of industry 4.0 revolution potential in a sustainable and renewable palm oil industry: HAZOP approach. Renewable and Sustainable Energy Reviews, 135, 110223. https://doi.org/10.33932/rir.44.3.2
Mei, C. A., Pham, D. T., Anthony, J. S., & Kok, W. N. (2010, November). PCB assembly optimisation using the Bees Algorithm enhanced with TRIZ operators. In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 2708-2713). IEEE. https://doi.org/10.1109/IECON.2010.5675114
M'Hallah, R., & Alhajraf, A. (2016). Ant colony systems for the single-machine total weighted earliness tardiness scheduling problem. Journal of Scheduling, 19(2), 191-205. https://doi.org/10.1007/s10951-015-0429-x
Nguyen, K., Nguyen, P., & Tran, N. (2012). A hybrid algorithm of harmony search and bees algorithm for a university course timetabling problem. International Journal of Computer Science Issues (IJCSI), 9(1), 12.
Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm-a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd. https://doi.org/10.1177/0959651811422759
Pham, D. T., Koc, E., Lee, J. Y., & Phrueksanant, J. (2007a). Using the bees algorithm to schedule jobs for a machine. In Proceedings Eighth International Conference on Laser Metrology, CMM and Machine Tool Performance, LAMDAMAP, Euspen, UK, Cardiff (pp. 430-439).
Pham, D. T., Otri, S., & Darwish, A. H. (2007b). Application of the Bees Algorithm to PCB assembly optimisation. In Proceedings of the 3rd virtual international conference on intelligent production machines and systems (IPROMS 2007) (pp. 511-516).
Pham, D. T., Castellani, M., & Fahmy, A. A. (2008). Learning the inverse kinematics of a robot manipulator using the bees algorithm. In 2008 6th IEEE International Conference on Industrial Informatics (pp. 493-498). IEEE. https://doi.org/10.1109/INDIN.2008.4618151
Pham, Q. T., Pham, D. T., & Castellani, M. (2012). A modified bees algorithm and a statistics-based method for tuning its parameters. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(3), 287-301. https://doi.org/10.1177/0959651811422759
Seeley, T. D. (2009). The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press. https://doi.org/10.2307/j.ctv1kz4h15
Sourd, F. (2009). New exact algorithms for one-machine earliness-tardiness scheduling. INFORMS Journal on Computing, 21(1), 167-175. https://doi.org/10.1287/ijoc.1080.0287
Sourd, F., & Kedad-Sidhoum, S. (2008). A faster branch-and-bound algorithm for the earliness-tardiness scheduling problem. Journal of Scheduling, 11(1), 49-58. https://doi.org/10.1007/s10951-007-0048-2
Tanaka, S., Fujikuma, S., & Araki, M. (2009). An exact algorithm for single-machine scheduling without machine idle time. Journal of Scheduling, 12(6), 575-593. https://doi.org/10.1007/s10951-008-0093-5
Von Frisch, K. (2014). Bees: their vision, chemical senses, and language. Cornell University Press.
Wan, L., & Yuan, J. (2013). Single-machine scheduling to minimize the total earliness and tardiness is strongly NP-hard. Operations Research Letters, 41(4), 363-365. https://doi.org/10.1016/j.orl.2013.04.007
Yau, H., Pan, Y., & Shi, L. (2008). New solution approaches to the general single-machine earliness-tardiness problem. IEEE Transactions on Automation Science and Engineering, 5(2), 349-360. https://doi.org/10.1109/TASE.2007.895219
Yuce, B., Packianather, M. S., Mastrocinque, E., Pham, D. T., & Lambiase, A. (2013). Honey bees inspired optimization method: the bees algorithm. Insects, 4(4), 646-662. https://doi.org/10.3390/insects4040646
Yuce, B., Fruggiero, F., Packianather, M. S., Pham, D. T., Mastrocinque, E., Lambiase, A., & Fera, M. (2017). Hybrid Genetic Bees Algorithm applied to single machine scheduling with earliness and tardiness penalties. Computers & Industrial Engineering, 113, 842-858. https://doi.org/10.1016/j.cie.2017.07.018
Yurtkuran, A., & Emel, E. (2016). A discrete artificial bee colony algorithm for single machine scheduling problems. International Journal of Production Research, 54(22), 6860-6878. https://doi.org/10.1080/00207543.2016.1185550
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ahmed Adnane Abdessemed, Leila Hayet Mouss , Khaled Benaggoune
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work as of Vol. 11 Iss. 2 (2023) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License