Genetic algorithms for the scheduling in additive manufacturing

S. Castillo-Rivera, J. De Antón, R. del Olmo, J. Pajares, A. López-Paredes

Abstract

Genetic Algorithms (GAs) are introduced to tackle the packing problem. The scheduling in Additive Manufacturing (AM) is also dealt with to set up a managed market, called “Lonja3D”. This will enable to determine an alternative tool through the combinatorial auctions, wherein the customers will be able to purchase the products at the best prices from the manufacturers. Moreover, the manufacturers will be able to optimize the production capacity and to decrease the operating costs in each case.


Keywords

Scheduling; Packing Problem; Genetic Algorithm

Full Text:

PDF

References

Ahsan, A., Habib, A., Khoda, B. (2015). Resource based process planning for additive manufacturing. Computer-Aided Design, 69, 112-125. https://doi.org/10.1016/j.cad.2015.03.006

Araújo, L., Özcan, E., Atkin, J., Baumers, M., Tuck, C., Hague, R. (2015). Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks. 26th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, 401-410.

Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55: 155-162. https://doi.org/10.1016/j.bushor.2011.11.003

Canellidis, V., Dedoussis, V., Mantzouratos, N., Sofianopoulou, S. (2006). Preprocessing methodology for optimizing stereolithography apparatus build performance. Computers in Industry, 57, 424-436. https://doi.org/10.1016/j.compind.2006.02.004

Chergui, A., Hadj-Hamoub, K., Vignata, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, 292-301. https://doi.org/10.1016/j.cie.2018.09.048

Demirel, E., Özelkan, E.C., Lim, C. (2018). Aggregate planning with flexibility requirements profile. International Journal of Production Economics, 202, 45-58. https://doi.org/10.1016/j.ijpe.2018.05.001

Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R., Todisco, V. (2018). A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling. International Journal of Industrial Engineering Computations, 9, 423-438. https://doi.org/10.5267/j.ijiec.2018.1.001

Hopper, E., Turton, B. (1997). Application of genetic algorithms to packing problems - A Review. Proceedings of the 2nd Online World Conference on Soft Computing in Engineering Design and Manufacturing, Springer Verlag, London, 279-288. https://doi.org/10.1007/978-1-4471-0427-8_30

Ikonen, I., Biles, W.E., Kumar, A., Wissel, J.C., Ragade, R.K. (1997). A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes. ICGA, 591-598.

Kim, K.H., Egbelu, P.J. (1999). Scheduling in a production environment with multiple process plans per job. International Journal of Production Research, 37, 2725-2753. https://doi.org/10.1080/002075499190491

Lawrynowicz, A. (2011). Genetic algorithms for solving scheduling problems in manufacturing systems. Foundations of Management, 3(2), 7-26. https://doi.org/10.2478/v10238-012-0039-2

Li, Q., Kucukkoc, I., Zhang, D. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 157-172. https://doi.org/10.1016/j.cor.2017.01.013

Milošević, M., Lukić, D., Đurđev, M., Vukman, J., Antić, A. (2016). Genetic Algorithms in Integrated Process Planning and Scheduling–A State of The Art Review. Proceedings in Manufacturing Systems, 11(2), 83-88.

Pour, M.A., Zanardini, M., Bacchetti, A., Zanoni, S. (2016). Additive manufacturing impacts on productions and logistics systems. IFAC, 49(12), 1679-1684. https://doi.org/10.1016/j.ifacol.2016.07.822

Wilhelm, W.E., Shin, H.M. (1985). Effectiveness of Alternate Operations in a Flexible Manufacturing System. International Journal of Production Research, 23(1), 65-79. https://doi.org/10.1080/00207548508904691

Xirouchakis, P., Kiritsis, D., Persson, J.G. (1998). A Petri net Technique for Process Planning Cost Estimation. Annals of the CIRP, 47(1), 427-430. https://doi.org/10.1016/S0007-8506(07)62867-4

Zhang, Y., Bernard, A., Gupta, R.K., Harik, R. (2014). Evaluating the design for additive manufacturing: a process planning perspective. Procedia CIRP, 21, 144-150. https://doi.org/10.1016/j.procir.2014.03.179

Abstract Views

1306
Metrics Loading ...

Metrics powered by PLOS ALM




This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives- 4.0 International License 

Universitat Politècnica de València

e-ISSN: 2340-4876     ISSN: 2340-5317   https://doi.org/10.4995/ijpme