A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks

Cavdur, F.a1*, Kaymaz, E.a2

a1Department of Industrial Engineering, Bursa Uludag University, Nilufer, Bursa, (Turkey).
a2fatihcavdur@uludag.edu.tr, a2eliifkaymaz@gmail.com

Abstract: In assembly lines, rework stations are generally used for reprocessing defective items. On the other hand, using rework stations for this purpose only might cause inefficient usage of the resources in this station especially in an assembly line with a low defective rate. In this study, a mixed-integer programming model for cycle time minimization is proposed by considering the use of rework stations for performing parallel tasks. By linearizing the non-linear constraint about parallel tasks using a variate transformation, the model is transformed to a linear-mixed-integer form. In addition to different defective rates, different rework station positions are also considered using the proposed model. The performance of the model is analyzed on several test problems from the related literature.

Key words: assembly line balancing, cycle time minimization, rework station, parallel tasks, mixed-integer programming.

1. Introduction

In the last station of an assembly line, it is quite frequent that some quality control procedures are also carried out in addition to the other tasks performed in the station. If a particular product does not pass the quality control check (i.e., a defective product), it is sent to the rework station for performing the necessary corrective operations to transform it into a non-defective product.

In assembly lines, rework stations are generally used for performing rework operations of defective products. On the other hand, using rework stations for this purpose only might cause inefficient usage of the resources in this station (i.e., low utilizations of operators, equipment etc.) especially in an assembly line with a low defective rate. It might be possible to increase the efficiency of the resources in a rework station by designing the station for performing standard tasks also in addition to the rework operations. In such a setting, one of the alternative utilizes of a rework station might be that it can be used for performing parallel tasks. In other words, some tasks might be parallelized so that they are assigned to both the rework station and a standard station where the task is performed in only one of these stations in each cycle sequentially (i.e., the task of the first product is performed in the standard station whereas the rework station is used to perform the task of the second product and so on). In this study, we propose an integer programming model considering the utilization of the rework station for parallel tasks in such a setting.

The organization of the study is as follows. In Section 2, a brief literature review on assembly line balancing and different parallelism concepts in assembly line balancing is presented. Section 3 defines the problem considered in the study. We present the details of the proposed mixed-integer programming model in Section 4 and a numerical example for illustration in Section 5. The performance of the model is tested using some sample problems from the literature as summarized in Section 6. Section 7 includes the final remarks.
2. Literature review

The concept of balancing assembly lines was introduced by Bryton in 1954 (Bryton, 1954) and the assembly line balancing (ALB) problem was defined by Salveson in 1955 (Salveson, 1955). It is possible to find different studies in the literature about the classification of ALB problems (Ghosh and Gagnon, 1989; Sivasankaran and Shahabudeen, 2014; Boysen et al., 2007). The study of Ghosh and Gagnon (1989) classifies ALB problems as single-model and multi/mixed-model ALB problems. A single type of item is produced in a single-model assembly line whereas more than different types of items are produced in a multi/mixed-model assembly line.

We can make another classification of ALB problem as the problems with deterministic and stochastic task times. An assembly line balancing problem with the following assumptions is defined as the simple assembly line balancing problem (SALBP) (Baybars, 1986):

- All input parameters are known with certainty.
- A task cannot be split among two or more stations.
- The tasks cannot be processed in arbitrary sequences due to technological precedence requirements.
- All tasks must be processed.
- All stations are capable of processing any tasks.
- Task times are independent of the station at which they are performed and of the preceding or following tasks.
- Any task can be processed at any station.
- Assembly line is considered to be serial with no feeder or parallel sub-assembly lines.
- Assembly system is assumed to be designed for a unique model of a single product.
- Cycle time is given and fixed (i.e., SALBP-1).
- Number of stations is given and fixed (i.e., SALBP-2).

Some assumptions about the SALBP are rather restrictive compared to real-life assembly line systems resulting with the increasing number of studies on generalized assembly line balancing problems (GALBP) including various constraints and problem features such as parallel stations and parallel tasks. Comprehensive studies regarding the SALBP and GALBP are presented by Becker and Scholl (2006) and Scholl and Becker (2006).

In addition to the categorization of the SALP as SALBP-1 and SALBP-2 defined with the aforementioned assumptions, it can be further generalized with respect to the objective function of the problem and divided into four categories as SALBP-1, SALBP-2, SALBP-E and SALBP-F where the recently added categories (i.e., SALBP-E and SALBP-F) considers both the cycle time and the number of stations at the same time for assembly line balancing, differently from SALBP-1 where the cycle time is given and fixed and SALBP-2 where the number of stations is given and fixed (Scholl and Becker, 2006; Wei and Chao, 2011).

Although assembly lines are usually classified as straight and U-shaped lines with respect to their designs, some other versions such as parallel lines and two-sided lines are also considered (Gokcen et al., 2006; Ozcan and Toklu, 2010; Kara et al., 2011). A straight ALB problem is considered in this study.

Various approaches are used for solving ALB problems. Some of these are exact methods such as branch-and-bound algorithm and dynamic programming. A comprehensive review of these is presented in the study of Boysen et al. (2007). Other approximate methods include various heuristics developed for some specific ALB problems and meta-heuristics used for many different types of problems (Battaia and Dolgui, 2013). Some examples of meta-heuristic approaches frequently used in the literature are genetic algorithms (Anderson and Ferris, 1994), ant colony optimization (Sabuncuoglu et al., 2009), simulated annealing (Cercioglu et al., 2009) and tabu search (Suwannarongsri and Puangdownreong, 2008).

It is noted that one of the factors affecting the cycle time of an assembly line is about the parallelism concept that can be classified into different categories such as parallelising assembly line systems (Suer 1998; Gokcen et al., 2006), workstations (Bard, 1989; Askin and Zhou, 1997, Tiacci et al., 2006, Simaria and Vilarinho., 2001), tasks (Pinto et al., 1975; Kaplan, 2004; Kazemi et al., 2011) and works (Bartholdi, 1993; Kim et al., 2000; Lee et al., 2001) considering the previous studies in the literature. Note that parallelising tasks as considered in this study is defined as the assignment of a task to more than one workstation. We also note the difference between our study and some other studies in which it is possible to divide tasks into smaller units and assign any of these units (not the task itself) to...
different stations whereas a task, as a whole only, can
be assigned to more than one station in our study due
to the assumption that tasks cannot be divided into
smaller units. In other words, a task can be assigned
to more than one station (a standard workstation and
the rework station, in our case) where consecutive
tasks are performed in the alternative workstations
sequentially (i.e., 1st task in the standard station, 2nd
task in the rework station, 3rd task in the standard
station and so on) to balance the workloads of both the
corresponding standard workstation and the rework
station. We also note that paralleling workstations
gains more interest from the researchers compared
to paralleling tasks considering the previous studies
in the literature focusing on both concepts. Although
some of the previous studies consider parallel tasks
(Pinto et al., 1975; Kaplan, 2004; Kazemi et al.,
2011), according to the best of our knowledge, none
of them conceptualized and formulated the utilization
of the rework station for parallel task assignment
constituting the main contribution of our study.

Balancing an assembly line considering task
times only might cause extreme workload on
some operators which is one of the main causes
of occupational accidents (Baykasoglu and Akyol,
2014; Mutlu and Ozturgan, 2012). We note an
increasing interest in the consideration of ergonomic
factors in assembly line balancing is in recent years.
Guner and Hasgul (2012), for instance, propose an
integer programming model considering ergonomic
factors. In another study, Efe et al. (2014) consider
Assembly Line Worker Assignment and Balancing
Problem (ALWABP) focusing on the workload
differences due to the ages and genders of operators.
In the study of Kara et al., (2014), a model is
proposed for integrating some ergonomic factors
into assembly line balancing.

We finalize this section by noting some remedial
actions from the related literature as these studies
include some similarities to ours in that some
schema (i.e., policy) is proposed to improve
some metrics (i.e., cycle time minimization) of an
assembly line. Some examples of such remedial
actions are stopping the line (Silverman and Carter,
1986), offline repair (Gokcen and Baykoc, 1999;
Kottas and Lau, 1976), hybrid lines (Lau and Shtub,
1987) and multiple manning (Shtub, 1984). Among
these remedial actions, the most commonly used are
stopping the line and offline repair (Altekin et al.,
2016). The first one can be defined as stopping the
assembly line to complete the missing tasks if the
tasks assigned to a station exceed the cycle time of
the total operation duration whereas the offline repair
remedial action is used for unfinished tasks at the end
of the cycle. As the reader might note although the
idea of the offline repair remedial action has some
conceptual similarity to the one proposed in our
study, the methodologies are totally different as the
offline repair remedial action is used for unfinished
tasks at the end of the cycle to improve the line
balance whereas we consider assigning parallel tasks
to the rework station for the same purpose which
constitutes the main contribution of our work since
it is not considered in none of the aforementioned
studies as well as the other related papers accessible
to us for review.

3. Problem description

The utilizations the resources in the rework station
might vary according to the defective rate of the
assembly line. A low defective rate causes inefficient
uses of the resources in the rework station. In such
cases, it might be advantageous to use the rework
station not only for rework operations but also some
of the other standard tasks. By using the rework
station for this purpose, some of the tasks performed
on other standard workstations can also be assigned
to the rework station as parallel tasks to be performed on
both the corresponding standard workstations as well
as the rework station. In other words, a specialized
version of parallel task assignment is considered in
this study where a parallel task is assigned to both
the rework station and a standard station where
the task is performed in only one of these stations
in each cycle sequentially (i.e., the task of the first
product is performed in the standard station whereas
the rework station is used to perform the task of the
second product and so on). Utilization of the rework
station for parallel tasks might contribute to the
minimization of the cycle time of the assembly line.
On the other hand, the defective rate of the assembly
line must be considered while assigning standard
tasks to the rework station since a low (high)
defective rate results in more (less) assignments. In
this study, we consider three different defective rates.

In addition to the defective rate of the assembly line,
The position in which the rework station is located
is also considered in this study. Since precedence
relations of the tasks change the order in which they
are performed, the number of tasks that can be
assigned to the rework station can vary depending on
the position of the rework station. It might be possible
to improve the cycle time by changing the position
of the rework station. Within the scope of the study, three different alternative designs are created where the rework station is located in the last three station positions as illustrated in Figure 1, Figure 2 and Figure 3, respectively where the flows to the rework station are colored as red for defective products and blue for the standard products (i.e., parallel tasks).

In Figure 1, the rework station is in last station position (i.e., the \((n+1)\)th station position) in an assembly line including \(n\) standard workstations. In a similar setting in Figure 2, the rework station is in the \(n\)th station position and it serves as a workstation where both the corrective operations for the defective products coming from the last station of the assembly line as well as the parallel tasks

![Figure 1](image1.png)

Figure 1. Positioning the rework station as the \((n+1)\)th station.

![Figure 2](image2.png)

Figure 2. Positioning rework station as the \(n\)th station.

![Figure 3](image3.png)

Figure 3. Positioning rework station as the \((n-1)\)th station.
for the products coming from the previous station (i.e., \((n-1)\)th station) are performed. In Figure 3, the rework station is located in the \((n-1)\)th station position where it serves similarly at its new position.

In addition to the aforementioned positions, the rework station can be moved to the previous station positions; however, since the rework station is primarily used as a station where defective products from the last station are corrected, moving away from the last station position increases the transportation times/distances of the defective products requiring corrections. On the other hand, instead of being located at the last station position, the number of potential tasks that can be assigned to the rework station can be increased by placing the rework station in positions near the last station (such as the \((n-1)\)th station, the \((n-2)\)th station positions) depending on the precedence relations constraints.

It is noted from the foregoing discussion that when the position of the rework station moves towards the first station position, we might have more flexibility in assigning tasks to the rework station depending on the precedence relations, but the transportation times/distances of the corrective operations increase. On the contrary, if the rework station position moves towards to the last station position, the flexibility might be lost in task assignments, but transportation times/distances of the corrective operations decrease in return.

4. Methodology

This section details the integer programming model developed to minimize the cycle time for the problem described in the previous pages.

Indexes:

\(\begin{align*}
 i & \quad \text{tasks, } i = 1, \ldots, m \\
 j & \quad \text{workstations } j = 1, \ldots, n
\end{align*} \)

Parameters:

\(\begin{align*}
 m & \quad \text{total number of tasks} \\
 n & \quad \text{total number of workstations} \\
 t_i & \quad \text{processing time for task } i \\
 P_{ik} & \quad \text{precedence relation matrix element, equals 1 if task } i \text{ is predecessor of task } k \text{ and 0 otherwise} \\
 r & \quad \text{rework station position}
\end{align*} \)

\(\begin{align*}
 \alpha & \quad \text{penalty for parallel task assignment} \\
 \beta & \quad \text{defective rate coefficient, } 1 \leq \beta \leq 1.75 \\
 \lambda & \quad \text{scaling factor for the objective function terms} \\
 \gamma & \quad \text{penalty used to limit the number of jobs that can be assigned to the rework station}
\end{align*} \)

Variables:

\(\begin{align*}
 c & \quad \text{cycle time} \\
 x_{ij} & \quad \text{equals 1 if task } i \text{ is assigned to station } j; \text{ 0 otherwise} \\
 y_i & \quad \text{equals 1 if task } i \text{ is assigned to the rework station; 0 otherwise} \\
 z_{ij} & \quad \text{equals 1 if task } i \text{ is assigned to both the rework station and station } j; \text{ 0 otherwise}
\end{align*} \)

Objective Function:

\[
\min z = \lambda c + (1-\lambda) \sum_{i=1}^{m} \alpha y_i
\] (1)

Constraints:

\[
\begin{align*}
 \leq \sum_{j=1}^{n+1} x_{ij} \leq 2, \quad \forall i \\
 x_{kj} \leq 1 - x_{kj}, \quad \forall i,j,k,q: p_{ijk} = 1; \forall q \geq j + 1 \\
 \sum_{i=1}^{m} \frac{t_i}{2} x_{ij} y_i + \sum_{i=1}^{m} t_i (1 - y_i) x_{ij} \leq c, \quad \forall j \\
 \beta \gamma \left(\sum_{i=1}^{m} \frac{t_i}{2} y_i \right) \leq c, \quad \forall j = r \\
 x_{ij} = y_i, \quad \forall i; j = r \\
 y_i = \sum_{j=1}^{n+1} x_{ij} - 1, \quad \forall i \\
 x_{ij} \in \{0,1\}, \quad \forall i,j \\
 y_i \in \{0,1\}, \quad \forall i \\
 c \geq 0
\end{align*}
\] (2) (3) (4) (5) (6) (7) (8) (9) (10)

The objective function in Equation (1) includes the weighted sum of the cycle time and the total number of parallel tasks. In this expression, \(\alpha \) is the penalty for each parallel task and \(\lambda \in [0,1] \) is...
defined as the scaling factor between the objective function components. In order to emphasize the effects of defective rate and rework station position, this study has been carried out with the assumption that there is no negative effects of parallel task assignment (i.e., for \(a=0 \) and \(z=1 \)) and the effects of these parameters similarly can be analyzed in future studies. The constraint given by Equation (2) ensures that tasks are assigned to at most two stations and at least one station. In other words, if a task is assigned to the rework station, (i.e., if it is a parallel task), it is then assigned to another standard station (i.e., the task is assigned to two stations). If it is not a parallel task, it can only be assigned to one station. The constraint given in Equation (3) indicates the precedence relations between tasks. It is ensured with Equation (4) that the total processing times of the tasks assigned to a station do not exceed the cycle time.

Since parallel tasks are assigned to two stations at the same time, half of the total processing times of the tasks is taken into consideration when calculating the cycle time. Similarly, the tasks that are assigned to the rework station are limited depending on the defective rate of the assembly line using Equation (5) where defective rate coefficient \(\beta \in [1,1.75] \) in the equation reserves some time for rework operations (i.e., corrective operations) where the extreme values (1 and 2) represent the cases in which no rework operations are performed at all and the rework station only performs rework operations. The other parameter \(\gamma \) is defined as the penalty used to limit the number of tasks that can be assigned to the rework station for various reasons, such as ergonomic factors due the rework station position. It might be desired that the number of jobs assigned to the rework station might be limited in the case that the rework station moves towards the first station position by defining \(\gamma = \frac{n}{r} \) as the ratio of the total number of stations to the rework station position. It is noted that with \(\beta \gamma \) factor, the number of tasks assigned to the rework station can be limited beyond the defective rate since \(\gamma = \frac{n}{r} \) parameter takes larger values as the rework station moves towards the first station position. In the context of this study, all computations are performed with the assumption of no effects of assigning parallel tasks or moving the rework station (i.e., \(\gamma = 1 \)). A detailed sensitivity analysis can be performed in future studies to examine the effects of these parameters.

Equation (6) and Equation (7) show the relationships between the corresponding variables by ensuring that if a task is assigned to the rework station, it must be a parallel task assigned to another standard workstation. Variable definitions are given by Equation (8), Equation (9), and Equation (10). Note that the constraints in Equation (4) and Equation (5) are nonlinear constraints due to the term of \(x_i y_j \), for all \(i \) and \(j \). We however note that it can be easily linearized since both variables are binary and a linear model can be obtained by introducing the new variables defined as \(z_{ij} = x_i y_j \), for all \(i \) and \(j \), as shown in Equation (11), Equation (12) and Equation (13).

\[
\begin{align*}
z_{ij} &\geq x_i + y_j - 1, \quad \forall \ i,j \quad (11) \\
z_{ij} &\leq x_i, \quad \forall \ i,j \quad (12) \\
z_{ij} &\leq y_j, \quad \forall \ i,j \quad (13)
\end{align*}
\]

5. Numerical example

We illustrate the proposed model using the Jackson test problem with 11 tasks and three and four stations from the literature. The precedence relations the Jackson sample together with the processing times of the tasks is shown in Figure 4. We solve the problem for three different defective rates and rework station positions as detailed in the previous section. Note that the rework station is added as an additional station to the original problem. In other words, in the three-station version of the Jackson sample, the rework station added as the fourth station, and thus, three setting considered are the ones where the rework station is located in the second, third and fourth station positions. Similarly, the model is solved for three different defective rates (i.e., \(\beta=1.25 \), \(\beta=1.5 \), and \(\beta=1.75 \)) in addition to the case of zero defective production (i.e., \(\beta=1.25 \)) in order to show the effect of the defective rate. The results are given in Table 1.

In addition, the results obtained for different rework station positions (for \(r=4 \), \(r=3 \) and, \(r=2 \) respectively) are shown in Figure 5, Figure 6 and Figure 7 for a defective rate coefficient of \(\beta=1.25 \) where we represent the standard tasks in white, parallel tasks in light gray and rework operations in dark gray. The effect of changing the position of the rework station in the figures is clearly observed. When the rework station is in the last station position, the number of potential tasks that can be assigned to the rework station is more limited depending on precedence relations and only a parallel task (with task number 11) can be assigned as shown in Figure 5. Accordingly, it is seen that the total time of the tasks
performed in the rework station is considerably less than the cycle time. On the other hand, by changing the position of the rework station by locating it in the third and second positions, it becomes possible to assign more tasks to the rework station, which makes it possible to achieve more improvements in the cycle time as seen in Figure 6 and Figure 7, respectively.

Figure 4. Precedence diagram and process times for Jackson data set.

The results in Table 1 show how the optimal solution changes depending on the position of the rework station and the defective rate of the assembly line. It is noted, for a 25% of defective rate (i.e.,) for instance, that when the rework station is in the second and third workstation positions, the cycle time is 12.5 time units whereas it is 15 time units when the rework station is in the fourth station position at the end of the assembly line. Similarly, increases in defective rate, also increases the cycle time due to more rework operations performed in the station. In addition to the Jackson sample, the test problems of Mitchells, Sawyer and Kilbrid are also solved for different number of stations to show the performance of the model and presented in the next section.

6. Computational results

In this section, the performance of the model is tested using various ALB problem test samples (i.e.,) the test problems of Jackson, Mitchells, Heskiaoff, Sawyer, Kilbrid) from the literature. The results are summarized in Table 2. The data about the test problems used in the study can be accessed at http://assembly-line-balancing.mansci.de

Table 1. Results for the Jackson sample.

<table>
<thead>
<tr>
<th>NS</th>
<th>CT</th>
<th>ST</th>
<th>RW Station</th>
<th>Position</th>
<th>β=1.00</th>
<th>β=1.25</th>
<th>β=1.50</th>
<th>β=1.75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>ST</td>
<td>CT</td>
<td>ST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>ST</td>
<td>CT</td>
<td>ST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>ST</td>
<td>CT</td>
<td>ST</td>
</tr>
</tbody>
</table>

NS (Number of Stations), CT (Cycle Time-time unit), ST (Solution Time-second).

Figure 5. Assignments for β=1.25 and r=4.

Figure 6. Assignments for β=1.25 and r=3.
Test problems are solved using GUROBI Optimizer in Mathematical Programming Language (MPL) on a personal computer (Intel (R) Core i7-7500 CPU 2.70 GHz 2.90 GHz). As in the previous section, all computations are performed for $\alpha = 0$, $\lambda = 1$ and $\gamma = 1$ in order to emphasize the effects of defective rate and rework station position. In future studies, the effects of these parameters can be similarly investigated. The results are summarized in Table 2 where two different number-of-stations combinations from the study of Ugurdag et al., (1997) are taken into consideration.

Table 2. Computational results.

<table>
<thead>
<tr>
<th>Problem</th>
<th>NS</th>
<th>CT</th>
<th>ST</th>
<th>CT</th>
<th>ST</th>
<th>CT</th>
<th>ST</th>
<th>CT</th>
<th>ST</th>
<th>CT</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>beta=1.00</td>
<td></td>
<td>beta=1.25</td>
<td></td>
<td>beta=1.50</td>
<td></td>
<td>beta=1.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Position</td>
<td></td>
<td>Position</td>
<td></td>
<td>Position</td>
<td></td>
<td>Position</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>ST</td>
<td>CT</td>
<td>ST</td>
<td>CT</td>
<td>ST</td>
<td>CT</td>
<td>ST</td>
</tr>
<tr>
<td>Jackson (11 task)</td>
<td>3+1</td>
<td>16.00</td>
<td>0.23</td>
<td>2</td>
<td>12.00</td>
<td>0.27</td>
<td>12.50</td>
<td>0.03</td>
<td>13.00</td>
<td>0.30</td>
<td>13.00</td>
</tr>
<tr>
<td>Mitchell (21 task)</td>
<td>3+1</td>
<td>35.00</td>
<td>0.00</td>
<td>3</td>
<td>31.00</td>
<td>0.05</td>
<td>31.00</td>
<td>0.11</td>
<td>31.00</td>
<td>0.03</td>
<td>31.00</td>
</tr>
<tr>
<td>Heskiaoff (28 task)</td>
<td>4+1</td>
<td>256.00</td>
<td>0.01</td>
<td>4</td>
<td>205.00</td>
<td>0.42</td>
<td>213.50</td>
<td>2.57</td>
<td>219.50</td>
<td>0.98</td>
<td>224.00</td>
</tr>
<tr>
<td>Sawyer (30 task)</td>
<td>5+1</td>
<td>65.00</td>
<td>0.08</td>
<td>5</td>
<td>57.00</td>
<td>1.47</td>
<td>57.50</td>
<td>2.97</td>
<td>57.50</td>
<td>2.65</td>
<td>58.63</td>
</tr>
<tr>
<td>Kilbrid (45 task)</td>
<td>6+1</td>
<td>92.00</td>
<td>0.20</td>
<td>6</td>
<td>79.00</td>
<td>1.48</td>
<td>81.50</td>
<td>4.31</td>
<td>83.00</td>
<td>3.80</td>
<td>84.00</td>
</tr>
</tbody>
</table>

NS (Number of Stations), CT (Cycle Time-time unit), ST (Solution Time-second).
A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks

The computational results in this section are presented in a similar form to the results of the numerical example given for the Jackson sample in the previous section. In addition to modified versions of the problems with the added rework stations, the original test problems (the ones without the rework stations) are also solved.

Similar to the numerical example computations given in the previous section, the problems are solved for three different defective rates (i.e., $\beta=1.25, \beta=1.50$ and $\beta=1.75$) in addition to the case of zero defective production (i.e., $\beta=1.00$). Similarly, three rework station positions are considered by positioning it as the last three stations of the assembly line. All problems are solved to optimality with the corresponding solution times varying between fractions of a second (for various problems such as the all versions of the Jackson sample with 11 tasks and Mitchells sample with 21 tasks) and 1,080 seconds (for the Heskiaoff sample with 28 tasks and 6 stations where the rework station is located in the 4th station position). It is also noted however that the maximum solution time of 1,080 seconds seems to be an outlier since the optimal solutions for all other cases (even for larger samples of Sawyer with 30 tasks and Kilbrid with 45 tasks) are obtained in significantly smaller durations (i.e., less than 10 seconds). We can observe the effects of different defective rates and rework station positions in Table 2.

7. Conclusions

In this study, we propose a mixed-integer programming model for minimizing the cycle time of an assembly line considering the use of the rework stations for parallel tasks in addition to the rework operations. Using the proposed model, the tasks are assigned to the rework station and a standard workstation in parallel to utilize the resources in the rework station. By linearizing the nonlinear constraints of the proposed model, it is transformed into a linear-mixed-integer program. We test the model using some test problems from the literature where we analyze the effects of different defective rates and the rework station position.

On the other hand, it is noted that the applicability of the proposed model might be limited in some real-life environments due to the difficulties about parallel task implementation in the assembly lines without a particular level of automation. In such situations, it becomes even more important to consider human factors especially for the workers responsible for performing parallel tasks and rework operations. Nevertheless, it might be easier to deal with such ergonomics difficulties in the near future with the technological developments yielding highly automated smart production systems.

Since the proposed model is obtained by variable transformation for linearization, model size is significantly increased compared to the original nonlinear model. As a result of this increase, applying the model on larger-size problems is expected to result in longer solution times. Developing some heuristic and meta-heuristic approaches to deal larger-size problems is important in future studies. In this study, in order to emphasize the effects of defective rate and rework station position, all computations all computations are performed with the corresponding parameter combination setting (i.e., $\alpha=0, \lambda=1$ and $\gamma=1$) ignoring the potential negative effects of parallel task assignment to be considered in future studies. In addition, more comprehensive experiments can be considered in the future to analyze the effects of the defective rate and rework station position. Finally, the validation of the solutions obtained by the proposed approach using simulation might also be useful to analyze the bottleneck effects of parallel task assignment especially for the problems involving uncertainty.

References

A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks

