Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña
DOI:
https://doi.org/10.4995/ia.2018.8931Palabras clave:
TETIS, CMIP5, Escenarios climáticos, Crecidas extraordinarias, InundacionesResumen
La evaluación de los impactos del Cambio Climático en un sistema de alta montaña es un objetivo primordial en la planificación y prevención de situaciones de riesgo como son las crecidas y las inundaciones. Sin embargo, evaluar con exactitud los impactos en los principales flujos y almacenamientos que intervienen en dicho sistema no es una tarea sencilla. Por lo cual, el objetivo de este estudio ha sido implementar el modelo hidrológico TETIS como herramienta de análisis en la evaluación de los impactos del Cambio Climático a escala de celda en una cuenca. Este modelo se ha calibrado automáticamente empleando el algoritmo de optimización Shuffled Complex Evolution. En las proyecciones futuras de las variables de precipitación y temperatura usadas por el modelo TETIS, se han usado los multimodelos climáticos del Coupled Model Intercomparison Project y los escenarios del Panel Intergubernamental del Cambio Climático. Los resultados obtenidos han mostrado que existe una modificación en la dinámica del sistema presentando un mayor riesgo por avenidas máximas extraordinarias e inundaciones.
Descargas
Citas
Adam, J. C., Hamlet, A. F., Lettenmaier, D. P. 2009. Implications of global climate change for snowmelt hydrology in the twentyfirst century. Hydrological Processes, 23(7), 962-972. https://doi.org/10.1002/hyp.7201
Arnell, N. W., Gosling, S. N. 2013. The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351-364. https://doi.org/10.1016/j.jhydrol.2013.02.010
Arnell, N. W., Reynard, N. S. 1996. The effects of climate change due to global warming on river flows in Great Britain. Journal of Hydrology, 183(3-4), 397-424. https://doi.org/10.1016/0022-1694(95)02950-8
Beven, K. 1989. Changing ideas in hydrology—The case of physically-based models. Journal of Hydrology, 105(1), 157-172. https://doi.org/10.1016/0022-1694(89)90101-7
Bobba, A. G. Singh, V. P., Jeffries, D. S., Bengtsson, L. 1997. Application of a watershed runoff model to north-east pond river, Newfoundland: To study water balance and hydrological characteristics owing to atmospheric change. Hydrological Processes, 11(12), 1573-1593. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12%3C1573::AID-HYP491%3E3.0.CO;2-V
Bonilla-Ovallos, C. A., Mesa, O. 2017. Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(158), 107. https://doi.org/10.18257/raccefyn.427
Burlando, P., Rosso, R. 2002a. Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy. Hydrological Processes, 16(6), 1151-1175. https://doi.org/10.1002/hyp.1055
Burlando, P., Rosso, R. 2002b. Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy. Hydrological Processes, 16(6), 1177-1199. https://doi.org/10.1002/hyp.1056
Devia, G. K., Ganasri, B. P., Dwarakish, G. S. 2015. A Review on Hydrological Models. Aquatic Procedia, 4, 1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126
Döll, P., Schmied, H. M. 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7(1), p. 14037. https://doi.org/10.1088/1748-9326/7/1/014037
Döll, P., Zhang, J. 2010. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrology and Earth System Sciences, 14(5), 783-799. https://doi.org/10.5194/hess-14-783-2010
Déqué M, Dreveton C, Braun A, Cariolle D. 1994. The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Climate Dynamics, 10, 249-266. https://doi.org/10.1007/BF00208992
Duan, Q., Sorooshian, S., Gupta, V. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. https://doi.org/10.1029/91WR02985
Dvorak, V., Hladny, J., Kasparek, L. 1997. Climate change hydrology and water resources impact and adaptation for selected river basins in the czech republic. Climatic Change, 36(1), 93-106. https://doi.org/10.1023/A:1005384120954
Eckhardt, K., Haverkamp, S., Fohrer, N., Frede, H.G. 2002. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 641-644. https://doi.org/10.1016/S1474-7065(02)00048-7
Francés, F., Vélez, J. I., Vélez, J. J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1), 226-240. https://doi.org/10.1016/j.jhydrol.2006.06.032
Fung, F., Lopez, A., New, M. 2010. Water availability in +2°C and +4°C worlds. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 369(1934), 99-116. https://doi.org/10.1098/rsta.2010.0293
Giorgi, F., Mearns, L. O. 1991. Approaches to the simulation of regional climate change: A review. Reviews of Geophysics. 29(2), 191-216. https://doi.org/10.1029/90RG02636
Giorgetta, M.A., Jungclaus, J., Reick C.H., Legutke, S., Bader J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.H., Claussen, M., Marotzke, J., Stevens, B. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572-597. https://doi.org/10.1002/jame.20038
Jeton, A. E., Dettinger, M. D., Smith, J. L. 1996. Potential effects of climate change on streamflow, Eastern and Western slopes of the Sierra Nevada, California and Nevada. Water-Resources Investigations Report, U.S. Geological Survey, p. 44.
Jiang, T., Chen, Y.D., Xu, C., Chen, X., Chen, X., Singh, V.P. 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology, 336(3), 316-333. https://doi.org/10.1016/j.jhydrol.2007.01.010
Kalin, L., Govindaraju, R. S., Hantush, M.M. 2003. Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. Journal of Hydrology, 276(1-4), 89-111. https://doi.org/10.1016/S0022-1694(03)00072-6
Lettenmaier, D. P., Gan, T. Y. 1990. Hydrologic sensitivities of the Sacramento-San Joaquin River Basin, California, to global warming. Water Resources Research, 26(1), 69-86. https://doi.org/10.1029/WR026i001p00069
Loukas, A., Quick, M.C. 1996. Effect of Climate Change on Hydrologic Regime of Two Climatically Different Watersheds. Journal of Hydrologic Engineering, 1(2), 77-87. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(77)
Mearns, L. O. Carbone, G., Doherty, R.M., Tsvetsinskaya, E., McCarl, B.A., Adams, R.M., McDaniel, L. 2004. The Uncertainty due to Spatial Scale of Climate Scenarios in Integrated Assessments: An Example from U.S. Agriculture. Integrated Assessment, 4(4), 225-235. https://doi.org/10.1080/1389517049051537
Merz, R., Blöschl, G. 2004. Regionalisation of catchment model parameters. Journal of Hydrology, 287(1-4), 95-123. https://doi.org/10.1016/j.jhydrol.2003.09.028
Mimikou, M. A., Kouvopoulos, Y. S. 1991. Regional climate change impacts: I. Impacts on water resources. Hydrological Sciences Journal, 36(3), 247-258. https://doi.org/10.1080/02626669109492507
Moradkhani, H., Sorooshian, S. 2008. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis, in Sorooshian, S. et al. (eds) Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 1-24. https://doi.org/10.1007/978-3-540-77843-1_1
Moreda, F., Cong, S., Schaake, J., Smith, M., 2006. Gridded rainfall estimation for distributed modeling in western mountainous areas. AGU Spring Meeting Abstracts 23, 32.
Nash, J. E. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
Nash, L. L., Gleick, P. H. 1991. Sensitivity of streamflow in the Colorado Basin to climatic changes. Journal of Hydrology, 125(3-4), 221-241. https://doi.org/10.1016/0022-1694(91)90030-L
Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A., Berg, N. 2013. California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble. Journal of Climate, 26, 6238-6256. https://doi.org/10.1175/JCLI-D-12-00514.1
Orozco, I. 2014 Modelación parsimoniosa y espacialmente distribuida de los procesos de acumulación y fusión de nieve. Tesis doctoral. Universidad Politécnica de Valencia (UPV). 1-290. http://doi.org/10.4995/Thesis/10251/36035
Peña, E., Barrios, M., Francés, F., 2016. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale, Journal of Hydrology, 541, 1258-1272. https://doi.org/10.1016/j.jhydrol.2016.08.031
Ruiz-Villanueva, V. Stoffel, M., Bussi, G., Francés, F., Bréthaut, C. 2014. Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 15(3), 505-515. https://doi.org/10.1007/s10113-014-0707-8
Scholze, M. Knorr, W., Arnell, N.W., Prentice, I.C. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences, 103(35), 13116-13120. https://doi.org/10.1073/pnas.0601816103
Smith, M. Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., Mizukami, N., Kitzmiller, D., Ding, F., Reed, S., Anderson, E., Schaake, J., Zhang, Y., Andréassian, V., Perrin, C., Coron, L., Valéry, A., Khakbaz, B., Sorooshian, S., Behrangi, A., Imam, B., Hsu, K.L., Todini, E.,Coccia, G., Mazzetti, C., Ortiz A.E., Francés, F.,Orozco, I., Hartman, R., Henkel, A., Fickenscher, P., Staggs, S. 2013. The distributed model intercomparison project - Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology. Elsevier B.V., 507, 300-329. https://doi.org/10.1016/j.jhydrol.2013.08.040
Stocker, T.F., Dahe, Q., Gian-Kasper, P., Melinda, M.B., Tignor, S.K. Allen, J.B., Alexander, N., Yu X., Vincent B., Pauline M.M. 2013. Cambio climático 2013-Bases físicas. Quinto Inf. Edited by 2013 Grupo Intergubernamental de Expertos sobre el Cambio Climático. 1-34.
Taylor, K. E., Stouffer, R. J., Meehl, G. A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
Trouet, V., Oldenborgh, G.J.V. 2013. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Research, 69 (1), 3-13. https://doi.org/10.3959/1536-1098-69.1.3
Wilby, R. L. Hay, L.E., Gutowski, W.J., Arritt, R.W., Takle, E.S., Pan, Z., Leavesley, G.H., Clark, M.P. 2000. Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 27(8), 1199-1202. https://doi.org/10.1029/1999GL006078
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional