Comparación de modelos de interceptación de agua de lluvia en individuos aislados de Pinus pinea y Cistus ladanifer

R. Pérez-Arellano, M. F. Moreno-Pérez, José Roldán-Cañas

Resumen

En este trabajo se realiza una comparación de varios modelos de simulación del proceso de interceptación, comúnmente utilizados en numerosos estudios, como son las versiones clásicas de Rutter y de Gash, además de la versión adaptada por Valente a bosques dispersos. El objetivo es analizar la aplicabilidad de los diferentes modelos en ejemplares aislados de dos especies de clima mediterráneo, Pinus pinea y Cistus ladanifer. La toma de datos se ha realizado en la cuenca de “El Cabril” (Córdoba), desde octubre de 2010 a junio de 2015. Las diferencias obtenidas entre las medidas de campo y los resultados de los diferentes modelos son inferiores al 6%, siendo el modelo de Rutter en su versión original el que mejor se ajusta en pino y el modelo original de Gash el que mejor se ajusta en el caso de la jara.


Palabras clave

Modelos de interceptación; Clima mediterráneo; Individuos aislados; Pinus pinea; Cistus ladanifer

Texto completo:

PDF

Referencias

Bellot, J. 1989. Análisis de los flujos de deposición global, trascolación, escorrentía cortical y deposición seca en el encinar mediterraneo de l’Avic (Sierra de Prades, Tarragona). Ph.D. Thesis. Universidad de Alicante, 300 pp.

Bringfelt, B., Harsmar, P.O. 1974. Rainfall interception in a forest in the Velen hydrological representative basin. Nordic Hidroylogy, 5(3), 146-165. https://doi.org/10.2166/nh.1974.0010

Calder, I.R. 1986. A stochastic model of rainfall interception. Journal of Hydrology, 89(1-2), 65-71. doi:10.1016/0022-1694(86)90143-5

Crockford, R.H., Richardson, D.P. 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes, 14(16-17), 2903–2920. doi:10.1002/1099-1085(200011/12)14:16/17%3C2903::AID-HYP126%3E3.0.CO;2-6

David, T.S., Gash, J.H.C., Valente, F., Pereira, J.S., Ferreira, M.I., David, J.S. 2006. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrological Processes, 20(13), 2713–2726. doi:10.1002/hyp.6062

David, J.S., Valente F., Gash J. 2005. Evaporation of intercepted rainfall. In: Anderson, M. (Ed.), Encyclopedia of Hydrological Sciences. John Wiley and Sons. Ltd., 627–634 (Chapter 43). doi:10.1002/0470848944.hsa046

Dingman, S. 2002. Physical Hydrology. Prentice Hall, Upper Saddle River. 646 pp.

Domingo, F., Puigdefábregas, J., Moro, M.J., Bellot, J. 1994. Role of vegetation cover in the biogeochemical balances of a small afforested catchment in southeastern Spain. Journal of Hydrology, 159(1-4), 275–289. doi:10.1016/0022-1694(94)90261-5

Domingo, F., Sánchez, G., Moro, M., Brenner, A., Puigdefábregas, J. 1998. Measurement and modelling of rainfall interception by three semi-arid canopies. Agricultural and Forest Meteorology, 91(3-4), 275–292. doi:10.1016/S0168-1923(98)00068-9

Dunkerley, D. 2000. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes, 14(4), 669–678. doi:10.1002/(SICI)1099-1085(200003)14:4%3C669::AIDHYP965%3E3.0.CO;2-I

Fernández Escobar, R., Trapero, A., Domínguez, J. 2010. Experimentación en agricultura. Servicio de Publicaciones y Divulgación. Sevilla: Consejería de Agricultura y Pesca, 350 pp.

García Apaza, E. 2005. Balance de agua y carbono en un ecosistema mediterráneo de costa. Ph.D. Thesis, Universidad de Alicante. 259 pp.

García-Estríngana, P. 2011. Efectos de diferentes tipos de vegetación mediterránea sobre la hidrología y la pérdida de suelo. Ph.D. Thesis, Universidad de Alcalá. Alcalá de Henares (Madrid). 170 pp.

Gash, J. 1979. An analytical model of rainfall interception by forest. Quarterly Journal of the Royal Meteorological Society, 105(443), 43–55. doi:10.1002/qj.49710544304

Gash, J., Lloyd, C., Lachaud, G. 1995. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170(1-4), 79–86. doi:10.1016/0022-1694(95)02697-N

Gerrits, A.M.J. 2010. The role of interception in the hydrological cycle. Ph.D. Thesis. Delft University of Technology, Holanda. 124 pp.

Gómez, J.A., Vanderlinden, K., Giráldez, J.V., Fereres, E. 2002. Rainfall concentration under olive trees. Agricultural Water Management, 55(1), 53–70. doi:10.1016/S0378-3774(01)00181-0

Guevara-Escobar, A., González-Sosa, E., Véliz-Chávez, C., Ventura-Ramos, E., Ramos-Salinas, M. 2007. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area. Journal of Hydrology, 333(2-4), 532–541. doi:10.1016/j.jhydrol.2006.09.017

Horton, R. 1919. Rainfall interception. Monthly Weather Review, 47, 603–623. doi:10.1175/1520-0493(1919)47%3C603:RI%3E2.0.CO;2

Huang, Y. S., Chen, S. S., Lin, T. P. 2004. Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method. Journal of Hydrology, 311(1-4), 1–7. doi:10.1016/j.jhydrol.2004.08.036

Ibrahim, M., Rapp, M., Lossaint, P. 1982. Economie de l’eau d’un écosystème à Pinus pinea L. du litoral Méditerranéen. Annals of Forest Science, 39(3), 289–306. doi:10.1051/forest:19820306

Iovino, F., Cinnirella, S., Veltri, A., Callegari, G. 1998. Processus hydriques dans des e´cosyste`mes forestiers. Ecologie, 29(1–2), 369-375.

Klaassen, W., Bosveld F., de Water E. 1998. Water storage and evaporation as constituents of rainfall interception. Journal of Hydrology, 212–213, 36–50. doi:10.1016/S0022-1694(98)00200-5

Legates, D.R., McCabe, G.J. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998WR900018

Levene, H. 1960. Robust tests for equality of variances. In I. Olkin et al. (eds.) Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford University Press, 278-292.

Llorens, P., Latron, J., Álvarez-Cobelas, M., Martínez-Vilalta, J., Moreno, G. 2011. Hydrology and biogeochemistry of Mediterranean forest. Forest Hydrology and Biogeochemistry. Ecological Studies, 216, 301-319. doi:10.1007/978-94-007-1363-5_14

Llorens, P., Poch, R., Latron, J., Gallart, F. 1997. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area. I. Monitoring design and results down to the event scale. Journal of Hydrology, 199(3-4), 331-345. doi:10.1016/S0022-1694(96)03334-3

Loescher, H., Powers, J., Oberbauer, S. 2002. Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica. Journal of Tropical Ecology, 18(3), 397-407. doi:10.1017/S0266467402002274

Massman, W. 1983. The derivation and validation of a new model for the interception of rainfall by forest. Agricultural Meteorology, 28(3), 261–286. doi:10.1016/0002-1571(83)90031-6

Mateos Rodríguez, A.B., Leco, F. 2010. Distribución espacial de la lluvia sobre el suelo en la dehesa: influencia de la poda del arbolado. Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario, 24(3-4), 41-51.

Méndez Monroy, E. 2013. Metodología para la medición de variables hidrometeorológicas que faciliten la implementación de modelos dinámicos de interceptación de lluvia en el contexto Colombiano. Ph.D. Thesis, Universidad Nacional de Colombia. 154 pp.

Merriam, R. 1960. A note on the interception loss equation. Journal of Geophysical Research, 65(11), 3850–3851. doi:10.1029/JZ065i011p03850

Monteith, J.L. 1965. Evaporation and the environment. In Symposium of the Society of Experimental Biology, 19, 205-234.

Moreno-Pérez M.F., Serrano-Gómez A., Roldán J. 2014. Application of interception models in a watershed with Mediterranean type climate. EGU General Assembly. Viena (Austria).

Mulder, J.P.M. 1985. Simulating interception loss using standard meteorological data. In: B.A. Hutchison and B.B. Hicks (Editors). The Forest-Atmosphere Interaction. D. Reidel, Dordrecht, Netherlands, 177-196. doi:10.1007/978-94-009-5305-5_12

Muzylo, A., Llorens, P., Valente, F., Keizer, J.J., Domingo F., Gash, J. 2009. A review of rainfall interception modelling. Journal of Hydrology, 370(1-4), 191–206. doi:10.1016/j.jhydrol.2009.02.058

Návar, J. 2011. Stemflow Variation in Mexico’s Northeastern Forest Communities: Its Contribution to Soil Moisture and Aquifer Recharge. Journal of Hydrology, 408(1-2), 35–52. doi:10.1016/j.jhydrol.2011.07.006

Pypker, T.G., Bond, B.J., Link, T.E., Marks, D., Unsworth, M.H. 2005. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and forest Meteorology, 130(1-2), 113–129. doi:10.1016/j.agrformet.2005.03.003

Pypker, T.G., Levia, D.F., Staelens, J., Van Stan, J.T. 2011. Canopy Structure in Relation to Hydrological and Biogeochemical Fluxes. Forest Hydrology and Biogeochemistry. Ecological Studies, 216, 371-388. doi:10.1007/978-94-007-1363-5_18

Rojas, R., Roldán, J., López Luque, R., Alcaide, M., Camacho, E. 1996. El riego del olivar en la provincia de Jaén (II): Programación de riegos. Ingeniería del Agua, 3(1), 43-52. doi:10.4995/ia.1996.2691

Rutter, A.J., Kershaw, K., Robins, P., Morton, A. 1971. A predictive model of rainfall interception in forest. I. Derivation of the model from observation in a plantation of Corsican pine. Agricultural Meteorology, 9, 367–384. doi:10.1016/0002-1571(71)90034-3

Rutter, A.J., Morton, A., Robins, P. 1975. A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12(1), 367–380. doi:10.2307/2401739

Rutter, A.J., Morton, A. 1977. A predictive model of rainfall interception in forests. III: Sensitivity of the model to stand parameters and meteorogical variables. Journal of Applied Ecology, 14(2), 567-688. doi:10.2307/2402568

Saltelli, A., Annoni, P. 2010. How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software, 25(12), 1508-1517. doi:10.1016/j.envsoft.2010.04.012

Saxena, R.K. 1986. Estimation of Canopy Reservoir Capacity and Oxygen-18 Fractionation in Throughfall in a Pine Forest. Nordic Hidroylogy, 17, 251-260. https://doi.org/10.2166/nh.1986.0017

Simões, M.P., Madeira, M., Gazarini, L. 2008. The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of Mediterranean shrubs in the context of global climate changes. Flora, 203(7), 578–589. doi:10.1016/j.flora.2007.09.008

Simões, M.P., Madeira, M., Gazarini, L. 2009. Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil, 323(1), 249–265. doi:10.1007/s11104-009-9934-z

Teklehaimanot, Z., Jarvis, P.G. 1991. Direct measurement of evaporation of intercepted water from forest canopies. Journal of Applied Ecology, 28(2): 603–618. doi:10.2307/2404571

Whitehead, D., Kelliher F.M. 1991. A canopy water balance model for a Pinus radiata stand before and after thinning. Agricultural and Forest Meteorology, 55(1-2), 109-126. doi:10.1016/0168-1923(91)90025-L

Valente, F., David J., Gash J. 1997. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190(1-2), 141–162. doi:10.1016/S0022-1694(96)03066-1

Venables W. N., Smith D.M., R Core Team. 2015. An Introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics. R Development Core Team. 99 pp.

Xiao, Q., Mcpherson, E.G., Ustin, S.L., Grismer, M.E. 2000. A new approach to modeling tree rainfall interception. Journal of Geophysical Research, 105(D23), 29173–29188. doi:10.1029/2000JD900343

Zinke, P. 1967. Forest interception studies in the United States. In: Sopper, W., Lull, H. (Eds.), International Symposium on Forest Hydrology. Pergamon, Oxford, 37–161.

Abstract Views

1693
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia