Análisis de los efectos hidráulicos asociados a la colocación de una compuerta inflable sobre un aliviadero mediante modelación física y numérica (CFD)

Sarai Díaz

Resumen

La facilidad de las compuertas inflables para adaptarse a distintas condiciones de flujo las hace interesantes para su ubicación en vertederos de presa, permitiendo aumentar el volumen embalsado en explotación ordinaria, y permitiendo el desinflado y restauración de la geometría original en situación extraordinaria. El objetivo de este estudio es analizar el efecto de la colocación de una compuerta inflable sobre un aliviadero en lo que respecta a su comportamiento hidráulico. Para ello, se desarrollan un modelo físico y un modelo numérico (CFD) del cuerpo de un aliviadero WES original, incorporándose luego una compuerta EPDM cuyo efecto se analiza para distintos niveles de inflado. Los resultados numéricos y experimentales son similares y ponen de manifiesto variaciones significativas en la distribución de presiones a lo largo del vertedero, siendo determinante la aireación. Este estudio concluye que la colocación de esta compuerta particular tiene un efecto global positivo si se realiza convenientemente, pero se requieren estudios adicionales con diferentes geometrías para profundizar en algunos aspectos negativos.


Palabras clave

Compuerta inflable; Aliviadero; CFD; Modelación experimental; Aireación bajo chorro

Texto completo:

PDF

Referencias

Alhamati, A.A.N., Mohammed, T.A., Ghazali, A.H., Norzaie, J., Al-Jumaily, K.K. 2005. Determination of coefficient of discharge for air-inflated dam using physical model. Suranaree Journal of Science and Technology 12(1), 19-27.

Al-Shami, A. 1983. Theory and design of inflatable structures. PhD thesis, University of Sheffield, Sheffield, United Kingdom.

Alwan, A.D. 1979. The analysis and design of inflatable dams. PhD thesis, University of Sheffield, Sheffield, United Kingdom.

Andersson, A.G., Andreasson, P., Lundström, T.S. 2013. CFD-modelling and validation of free surface flow during spilling of reservoir in down-scale model. Engineering Applications of Computational Fluids 7(1), 159-167. https://doi.org/10.1080/19942060.2013.11015461

Anwar, H.O. 1967. Inflatable dams. Journal of Hydraulic Divison-ASCE 93(HY3), 99-119.

Bardina, J.E., Huang, P.G., Coakley, T.J. 1997. Turbulence modelling validation, testing and development. Ames Research Center, California, USA. https://doi.org/10.2514/6.1997-2121

Binnie, G.M., Thomas, A.R., Gwyther,J.R. 1973. Inflatable weir used during construction of Mangla Dam. Proceedings of the Institution of Civil Engineers Part 1- Design and Construction 54, 629-639. https://doi.org/10.1680/iicep.1973.4184

Chanson, H. 1997. A review of the overflow of inflatable flexible membrane dams. Australasian Civil/Structural Engineering Transactions CE39(2-3), 107-116.

Chanson, H. 1998. Hydraulics of rubber dam overflow: a simple design approach. 13th Australasian Fluid Mechanics Conference, Melbourne, Australia, 255-258.

Cheraghi-Shirazi, N., Kabiri-Samani, A.R., Boroomand, B. 2014. Numerical analysis of rubber dams using fluid-structure interactions. Flow Measurement and Instrumentation 40, 91-98. https://doi.org/10.1016/j.flowmeasinst.2014.08.006

Feurich, R., Olsen, N.B.R. 2012. Finding free surface of supercritical flows – numerical investigation. Engineering Applications of Computational Fluid Mechanics 6(2), 307-315. https://doi.org/10.1080/19942060.2012.11015423

Gebhardt, M. 2006. Hydraulische und statische Bemessung von Schlauchwehren, Heft 235. Ed. Universitätverlag Karlsruhe, Karlsruhe, Germany.

Gebhardt, M. 2007. Stand der Schlauchwehrtechnik, Anwendungsbeispiele und Betriebserfahrungen. Mitteilungsblatt der Bundesanstalt für Wasswerbau 91, 47-56.

Ghavanloo, E., Daneshmand, F. 2010. Analytical analysis of the static interaction of fluid and cylindrical membrane structures. European Journal of Mechanics – A/Solids 29(4), 600-610. https://doi.org/10.1016/j.euromechsol.2009.12.006

Hassler, M., Schweizerhof, K. 2008. On the static interaction of fluid and gas loaded multi-chamber systems in large deformation finite element analysis. Computational Methods Applied Mechanical Engineering 197(19), 1725-1749. https://doi.org/10.1016/j.cma.2007.08.028

Karimpour, A., Kaye, N., Khan, A. 2011. CFD study of merging turbulent plane jets. Journal of Hydraulic Engineering - ASCE 137(3), 381-385. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000308

Khatsuria, R.M. 2004. Ogee or overflow spillways. In: Hydraulics of Spillways and Energy Dissipators. CRC Press, NY, USA. https://doi.org/10.1201/9780203996980

León, A.S., Liu, X., Ghidaoui, M.S., Schmidt, A.R., García, M.H. 2010. Junction and drop-shaft boundary conditions for modeling free-surface, pressurized, and mixed free-surface pressurized transient flows. Journal of Hydraulic Engineering - ASCE 136(10), 705-715. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000240

Novak, P., Moffat, A.I.B., Nalluri, C., Narayanan, R. 2007. Dam outlet works. In: Hydraulic structures-Fourth Edition. Taylor & Francis, NY, USA.

Shepherd, E.M., McKay, F.A., Hodgens, V.T. 1969. The fabridam extension on Koombooloomba Dam of the Tully Falls hydroelectric-power project. Journal of the Institution of Engineers (Australia) 41, 1-7.

Soares, C., Noriler, D., Maciel, M., Barros, A., Meier, H. 2013. Verification and validation in CFD for a free-surface gas-liquid flow in channels. Brazilian Journal of Chemical Engineering 30(2), 323-335. https://doi.org/10.1590/S0104-66322013000200010

Watson, L.T., Suherman, S., Plaut, R.H. 1999. Two-dimensional elastic analysis of equilibrium shapes of single-anchor inflatable dams. International Journal of Solids and Structures 36, 1383-1398. https://doi.org/10.1016/S0020-7683(98)00034-1

Zhang, X.Q., Tam, P.W.N., Zheng, W. 2002. Construction, operation and maintenance of rubber dams. Canadian Journal of Civil Engineering 29(3), 409-420. https://doi.org/10.1139/l02-016

Zhao, C.H., Zhu, D.Z., Rajaratnam, N. 2008. Computational and experimental study of surcharged flow at a 90º combining sewer junction. Journal of Hydraulic Engineering - ASCE 134(6), 688-700. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(688)

Abstract Views

2392
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia