Maximización de la función de Verosimilitud de Distribuciones de Probabilidad usando Algoritmos Genéticos

Óscar Arturo Fuentes Mariles, Maritza Liliana Arganis Juárez, Ramón Domínguez Mora, Guadalupe Esther Fuentes Mariles, Katya Rodríguez Vázquez

Resumen

Tradicionalmente, para obtener los parámetros de una función de distribución con el método de máxima verosimilitud se acostumbra igualar a cero la derivada del logaritmo de la función de verosimilitud y resolver el sistema de ecuaciones no lineales que resulta. La popularidad del procedimiento se debe a su sencillez; sin embargo, cuando la función de verosimilitud no es suficientemente regular, puede llevar a obtener un valor muy alejado del máximo Por ese motivo, en este documento se presenta el uso de un algoritmo genético que permite encontrar los parámetros de la función de distribución (con los que se maximiza directamente la función de verosimilitud, o su logaritmo), sin recurrir a la derivada de los logaritmos de dicha función. Se halló buena concordancia de los resultados respecto a los obtenidos usando un software de uso frecuente en México, para el caso las funciones Gumbel y Gumbel de dos poblaciones.

 


Palabras clave

Algoritmo genético; Máxima verosimilitud; Función Gumbel; Gumbel de dos poblaciones; Optimización

Texto completo:

PDF

Referencias

Arganis-Juárez, M.L., Domínguez-Mora, R., González-Villarreal, F., Carrizosa-Elizondo, E., Esquivel-Garduño, G., Hollands, A.J., Ramírez-Salazar, L.E. (2009). Estudio Integral de la Cuenca Alta del Río Grjialva. Actualización de Avenidas de Diseño. Para CFE. Informe Final.

Baker, J.E. (1985). Adaptive Search Selection Methods for Genetic Algorithms, in Proceedings of the First International Conference on Genetic Algorithms (Grefenstette, ed), Lawrence Erlbaum, 101-111.

Clark, C., Whu, Y.Z. (2006). Integrated hydraulic model and genetic algorithm optimization for informed analysis of a real water system. Asce 8th Annual International Symposium On Water Distribution System Analysis, Cincinnati, August 27-30, Ohio.

Domínguez-Mora, R., Carrizosa-Elizondo, E., Fuentes-Mariles, G.E., Arganis-Juárez, M.L. (2000). Estudio de diferentes aspectos sobre el funcionamiento de la obra de excedencias del Proyecto Hidroeléctrico, la Angostura, Chiapas y actualización de la hidrología para el sistema de presas del Río Grijalva. “Estudio Hidrológico de la Cuenca alta del Río Grijalva”. Para CFE. Informe final.

Domínguez-Mora, R., Fuentes-Mariles, G.E., Arganis-Juárez, M.L. (2004). Optimación de los parámetros de la función de distribución doble gumbel usando algoritmos genéticos en una serie de gastos máximos anuales. XXI Congreso Latinoamericano de Hidráulica, Sao Paulo, Brasil.

Domínguez-Mora, R., Arganis-Juárez, M.L., Carrizosa-Elizondo, E., Fuentes-Mariles, G.E., Echeverri, C.A. (2006). Determinación de Avenidas de Diseño y Ajuste de los Parámetros del Modelo de Optimización de las Políticas de Operación del Sistema de Presas del Río Grijalva. Para CFE. Informe Final.

Escalante-Sandoval, C., Reyes-Chávez, L. (2002). Técnicas Estadísticas en Hidrología. Facultad de Ingeniería. Universidad Nacional Autónoma de México.

Fuentes-Mariles, O.A., Fuentes-Mariles, G.E., Domínguez-Mora, R. (2005). Optimación de los parámetros de algunas funciones de distribución de probabilidad de gastos máximos anuales usando un algoritmo genético simple. 4a. Conferencia Iberoamericana en Sistemas Cibernética e Informática, Cicsi, Orlando, Flo., Usa, Vol. 2, 156-159.

Fuentes-Mariles, O.A. Domínguez-Mora, R., Fuentes-Mariles, G.E., Arganis-Juárez, M.L., Rodríguez-Vázquez, K. (2006). Estimación de los parámetros de funciones de distribución empleadas en hidrología usando ecuaciones de máxima verosimilitud y algoritmos genéticos. XXII Congreso Latinoamericano De Hidráulica, Ciudad Guayana, Venezuela.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, USA.

González-Villarreal, F. (1970). Contribución al análisis de frecuencias de valores extremos de los gastos máximos en un río. Serie Azul, Instituto de Ingeniería, UNAM.

Gumbel, E.J. (1958). Statistics of Extremes, Columbia University Press, New York. (citado por Koutsoyiannis, D., 2003)

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press.

Horbelt, W., Timmer, J., Voss, H.U. (2002). Parameter estimation in nonlinear delayed feedback systems from noisy data. Physics Letters A. 299(5-6): 513–521. doi:10.1016/S0375-9601(02)00748-X

Jenkinson, A.F. (1955). The frequency distribution of the annual maximum (or minimum) value of meteorological elements, Quarterly Journal of the Royal Meteorological Society 81, 158-171. (citado por Koutsoyiannis, D.,2003) https://doi.org/10.1002/qj.49708134804

Jenkinson, A.F. (1969). Estimation of maximum floods, World Meteorological Organization, Technical Note No. 98, ch. 5, 183-257. (citado por Koutsoyiannis, D.,2003)

Jha, M.K., Nanda G., Samuel, M.P. (2004). Determining hydraulic characteristics of production wells using genetic algorithm Water Resources Management, 18(4): 353–377. doi:10.1023/B:WARM.0000048485.62254.1c

Jiménez-Espinoza. M. (1996). Programa Ax. Área De Riesgos Hidrometeorológicos. Centro Nacional de Prevención de Desastres. México.

Kite, G.W. (1988). Frequency And Risk Analyses In Hidrology. Littletown, Colorado.USA.

Koutsoyiannis, D. (2003). On the appropriateness of the gumbel distribution in modelling extreme rainfall. Hydrological Risk: recent advances in peak river flow modelling, prediction and real-time forecasting. Assessment of the impacts of land-use and climate changes. Proceedings of the ESF LESC Exploratory Workshop held at Bologna, Italy, October 24-25, 303-319.

Liu, Y., Khu, S.T., Savic D. (2004). A Hybrid Optimization Method Of Multi-Objective Genetic Algorithm (Moga) And K-Nearest Neighbor (Knn) Classifier for Hydrological Model Calibration. Lecture Notes In Computer Sciences, Volume 3177, 546-551. doi:10.1007/978-3-540-28651-6_80

Mazariegos, B.R., Raynal-V., J.A. (2002). Paquete Interactivo Para La Estimación De Parámetros De La Distribución Weibull, B14. Memorias Del XX Congreso Latinoamericano De Hidráulica, La Habana, Cuba.

Myung, I.J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1): 90–100, doi:10.1016/S0022-2496(02)00028-7.

Nicklow, J.W., Ozkurt O., Bringer Jr, J.A. (2003). Control of Channel Bed Morphology in Large-Scale River Networks using a Genetic Algorithm, Water Resources Management, 17(2): 113–132. doi:10.1023/A:1023609806431

O-Matrix Statistical Time Series Analysis. Stsa Toolbox Version 2. (2005). The Time Series Analysis Toolbox For O-Matrix, http://www.omatrix.com/Stsav2.html

Rao, A.R., Hamed, K.H. (2000). Flood Frequency Analysis. Crc Press, USA, Web Site: Google.Books.Com

Rossi, F., Florentino, M., Versace, P. (1984). Two-Component Extreme Value Distribution for Flood Frequency Analysis, Water Resources Research 20(7), 847-856. doi:10.1029/WR020i007p00847

Smith, R.L. (1988). Forecasting Records By Maximum Likelihood. Journal Of The American Statistical Association, 83(402): 331-338. doi:10.2307/2288847.

The Mathworks, Inc. (1992). The Mathworks Matlab Reference Guide.

Abstract Views

5639
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Influence of the bandwidth in the harmonic search to optimize the mixed univariate Gumbel function
Juan Pablo Molina–Aguilar, M. Alfonso Gutiérrez–López
Theoretical and Applied Climatology  vol: 139  num.: 1-2  primera página: 801  año: 2020  
doi: 10.1007/s00704-019-03001-9



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia